

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives

The main objectives of this experiment are to familiarize you with:

 The MOV instructions

 Writing simple codes, compiling the project and Code simulation

 The concept of bank switching

 The MPASM directives

 Microcontroller Flags

 Arithmetic and logical operations

1

Experiment 1: MPLAB and Instruction Set

Analysis 1

Pre-lab requirements

Before starting this experiment, you should have already acquired the MPLAB software and the related PIC

datasheets from drive D on any of the lab PC’s. You are encouraged to install the latest version of MPLAB

(provided in the lab) especially if you have Windows Vista

Starting up with instructions

Movement instructions

You should know by now that most PIC instructions (logical and arithmetic) work through the working register

“W”, that is one of their operands must always be the working register “W”, the other operand might be either a

constant or a memory location. Many operations store their result in the working register; therefore we can

conclude that we need the following movement operations:

1. Moving constants to the working register (Loading)

2. Moving values from the data memory to the working register (Loading)

3. Moving values from the working register to the data memory (Storing)

INSTRUCTIONS ARE CASE INSENSITIVE: YOU CAN WRITE IN EITHER SMALL OR CAPITAL

LETTERS

 MOVLW: moves a literal (constant) to the working register (final destination). The constant is

specified by the instruction. You can directly load constants as decimal, binary, hexadecimal, octal and

ASCII. The following examples illustrate:

DEFAULT INPUT IS HEXADECIMAL

1. MOVLW 05 : moves the constant 5 to the working register

2. MOVLW 10 : moves the constant 16 to the working register.

3. MOVLW 0xAB : moves the constant ABh to the working register

4. MOVLW H’7F’ : moves the constant 7Fh to the working register

5. MOVLW CD : WRONG, if a hexadecimal number starts with a character, you

 should write it as 0CD or 0xCD or H’CD’

6. MOVLW d’10’ : moves the decimal value 10 to the working register.

7. MOVLW .10 : moves the decimal value 10 to the working register.

8. MOVLW b ’10011110’ : moves the binary value 10011110 to the working register.

9. MOVLW O ’76’ : moves the octal value 76 to the working register.

10. MOVLW A’g’ : moves the ASCII value g to the working register.

 MOVWF: COPIES the value found in the working register into the data memory, but to which

location? The location is specified along with the instruction and according to the memory map.

So what is the memory map?

A memory map shows all available registers

(in data memory) of a certain PIC along with

their addresses, it is organized as a table

format and has two parts:

1. Upper part: which lists all the Special

Function Registers (SFR) in a PIC, these

registers normally have specific functions

and are used to control the PIC operation

2. Lower part: which shows the General

Purpose Registers (GPR) in a PIC; GPRs

are data memory locations that the user is

free to use as he wishes.

Memory Maps of different PICs are

different. Refer to the datasheets for the

appropriate data map

Examples:

1. MOVWF 01 : COPIES the value found in W to

 TMR0

2. MOVWF 05 : COPIES the value found in W to

 PORTA

3. MOVWF 0C : COPIES the value found in W to

 a GPR (location 0C)

4. MOVWF 32 : COPIES the value found in W to

 a GPR (location 32)

5. MOVWF 52 : WRONG, out of data memory range

of the PIC 16F84a (GPR range is from 0C-4F

and 8C to CF)

 MOVF: COPIES a value found in the data

memory to the working register OR to itself.

Therefore we expect a second operand to specify

whether the destination is the working register or

the register itself.

For now: a 0 means the W, a 1 means the register

itself.

Examples:

1. MOVF 05, 0 : copies the content of PORTA to the working register

2. MOVF 2D, 0 : copies the content of the GPR 2D the working register

3. MOVF 05, 1 : copies the content of PORTA to itself

4. MOVF 2D, 1 : copies the content of the GPR 2D to itself

Now we will simulate a program in MPLAB and check the results

In MPLAB write the following program:

Movlw 5 ; move the constant 5 to the working register

Movwf 01 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)

Movf 01, 0 ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write for now

End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing build

An output window should show: BUILD SUCCEDDED

BUILD SUCCEED DOES NOT MEAN THAT YOUR PROGRAM IS CORRECT, IT SIMPLY MEANS THAT

THERE ARE NO SYNTAX ERRORS FOUND, SO WATCH OUT FOR ANY LOGICAL ERRORS YOU

MIGHT MAKE.

Notice that there are several warnings after building the file, warnings do not affect the execution of the

program but they are worth reading. This warning reads: “Found opcode in column 1”, column 1 is

reserved for labels; however, we have written instructions (opcode) instead thus the warning.

TO SOLVE THIS WARNING SIMPLY TYPE FEW BLANK SPACES BEFORE EACH INSTRUCTION OR PRESS

TAB

Preparing for simulation

Go to View Menu Watch

From the drop out menu choose the registers we want to

watch during simulation and click ADD SFR for each one

Add the following:

 WREG: working register

 TMR0

 INTCON

You should have the following:

Notice that the default format is in hexadecimal, to change it (if you need to) simply right-click on the

row Properties and choose the new format you wish.

From the Debugger Menu choose Select Tool then MPLAB SIM

Now new buttons will appear in the toolbar:

Step Into Reset

1. To begin the simulation, we will start by resetting the PIC; do so by pressing the yellow reset

button. A green arrow will appear next to the first instruction.

The green arrow means that the program counter is pointing to this instruction which has not

been executed yet.

Notice the status bar below:

Keep an eye on the value of the program counter (pc: initially 0), see how it changes as we

simulate the program

2. Press the “Step Into” button one at a time and check the Watch window each time an instruction

executes; keep pressing “Step Into” until you reach the NOP instruction then STOP.

Compare the results as seen in the Watch window with those expected.

The “END” directive

If you refer to the Appendix at the end of this experiment, you will notice that there is no end instruction
among the PIC 16 series instructions, so what is “END”?

The “END” command is a directive which tells the MPLAB IDE that we have finished our program. It has
nothing to do with neither the actual program nor the PIC.

The END should always be the last statement in your program
Anything which is written after the end command will not be executed and any variable names will be
undefined.

Making your program easier to understand: the “equ” and “include” directives

As you have just noticed, it is difficult to write, read, debug or understand programs while dealing with
memory addresses as numbers. Therefore, we will learn to use new directives to facilitate program
reading.

The “EQU” directive

The equate directive is used to assign labels to numeric values. They are used to DEFINE CONSTANTS or to
ASSIGN NAMES TO MEMORY ADDRESSES OR INDIVIDUAL BITS IN A REGISTER and then use the name
instead of the numeric address.

Timer0 equ 01
Intcon equ 0B
Workrg equ 0
Movlw 5 ; move the constant 5 to the working register

Movwf Timer0 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf Intcon ; copy the value 2 from working register to INTCON (address 0B)

Movf Timer0, Workrg ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write it for now

End

Notice how it is easier now to read and understand the program, you can directly know the actions

executed by the program without referring back to the memory map by simply giving each address a

name at the beginning of your program.

DIRECTIVES THEMSELVES ARE NOT CASE-SENSITIVE BUT THE LABELS YOU DEFINE ARE. SO YOU

MUST USE THE NAME AS YOU HAVE DEFINED IT SINCE IT IS CASE-SENSITIVE.

Directives

Directives are not instructions. They are assembler commands that appear in the source
code but are not usually translated directly into opcodes. They are used to control the
assembler: its input, output, and data allocation. They are not converted to machine code
(.hex file) and therefore not downloaded to the PIC.

As you have already seen, the GPRs in a memory map (lower part) do not have names as the SFRs
(Upper part), so it would be difficult to use their addresses each time we want to use them. Here,
the “equate” statement proves helpful.

Num1 equ 20 ;GPR @ location 20
Num2 equ 40 ;GPR @ location 40
Workrg equ 0
Movlw 5 ; move the constant 5 to the working register

Movwf Num1 ; copy the value 5 from working register to Num1 (address 20)

Movlw 2 ; move the constant 2 to the working register

Movwf Num2 ; copy the value 2 from working register to Num2 (address 40)

Movf Num1, Workrg ; copy back the value 5 from Num1 to working register

Nop ; this instruction does nothing, but it is important to write it for now

End

When simulating the above code, you need to add Num1, Num2 to the watch window, however,
since Num1 and Num2 are not SFRs but GPRs, you will not find them in the drop out menu of the
“Add SFR”, instead you will find them in the drop out menu of the “Add symbol”.

The “INCLUDE” directive

Suppose we are to write a huge program that uses all registers. It will be a tiresome task to define all
Special Function Registers (SFR) and bit names using “equate” statements. Therefore we use the include
directive. The include directive calls a file which has all the equate statements defined for you and ready to
use, its syntax is

#include “PXXXXXXX.inc” where XXXXXX is the PIC part number

Older version of include without #, still supported.

Example: #include “P16F84A.inc”

The only condition when using the include directive is to use the names as Microchip defined them which

are ALL CAPITAL LETTERS and AS WRITTEN IN THE DATA SHEET. If you don’t do so, the MPLAB will tell

you that the variable is undefined!

#include “P16F84A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TMR0 ; copy the value 5 from working register to TMR0 (address 01)

Movlw 2 ; move the constant 2 to the working register

Movwf INTCON ; copy the value 2 from working register to INTCON (address 0B)

Movf TMR0, W ; copy back the value 5 from TMR0 to working register

Nop ; this instruction does nothing, but it is important to write it for now

End

The “Cblock” directive
You have learnt that you can assign GPR locations names using the equate statements to facilitate dealing

with them. Though this is correct, it is not recommended by Microchip as a good programming practice.

Instead you are instructed to use cblocks when defining and declaring GPRs. So then, what is the use of the

“equ” directive?

From now on, follow these two simple programming rules:

1. The “EQU” directive is used to define constants

2. The “cblock” is used to define variables in the data memory.

The cblock defines variables in sequential locations, see the following declaration

Cblock 0x35

 VarX

VarY

VarZ

endc

Here, VarX has the starting address of the cblock, which is 0x35, VarY has the sequential address 0x36 and

VarZ the address of 0x37

What if I want to define variable at locations which are not sequential, that is some addresses are at 0x25

others at 0x40?

Simply use another cblock statement, you can add as many cblock statements as you need

The Origin “org” directive

The origin directive is used to place the instruction which exactly comes after it at the location it
specifies.

Examples:

Org 0x00

Movlw 05 ;This instruction has address 0 in program memory

Addwf TMR0 ;This instruction has address 1 in program memory

Org 0x04 ;Program memory locations 2 and 3 are empty, skip to address 4 where it contains

Addlw 08 ;this instruction

Org 0x13 ;WRONG, org only takes even addresses

In This Course, Never Use Any Origin Directives Except For Org 0x00 And 0x04, Changing Instructions’

Locations In The Program Memory Can Lead To Numerous Errors.

The Concept of Bank Switching

Write, build and simulate the following program in your MPLAB editor. This program is very similar to the

ones discussed above but with a change of memory locations.

#include “P16F84A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)

Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

Nop ; this instruction does nothing, but it is important to write it for now

End

After simulation, you will notice that both TRISA and OPTION_REG were not filled with the values
5 and 2 respectively! But why?

Notice that the memory map is divided into two columns, each column is called a bank, here we
have two banks: bank 0 and bank 1. In order to access bank 1, we have to switch to that bank first
and same for bank 0. But how do we make the switch?

Look at the details of the STATUS register in the figure below, there are two bits RP0 and RP1,
these bits control which bank we are in:

 If RP0 is 0 then we are in bank 0
 If RP0 is 1 then we are in bank 1

We can change RP0 by using the bcf/bsf instructions

 BCF STATUS, RP0 RP0 in STATUS is 0 switch to bank 0
 BSF STATUS, RP0 RP0 in STATUS is 1 switch to bank 1

BCF: Bit Clear File Register (makes a specified bit in a specified file register a 0)

BSF: Bit Set File Register (makes a specified bit in a specified file register a 1)

Try the program again with the following change and check the results:

#include “P16F84A.inc”

BSF STATUS, RP0

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)

Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

BCF STATUS, RP0

Nop ; this instruction does nothing, but it is important to write it for now

End

The “Banksel” directive

When using medium-range and high-end microcontrollers, it will be a hard task to check the memory map
for each register we will use. Therefore the BANKSEL directive is used instead to simplify this issue. This
directive is a command to the assembler and linker to generate bank selecting code to set the bank to the
bank containing the designated label

Example:
BANKSEL TRISA will be replaced by the assembler, which will automatically know which bank the register
is in and generate the appropriate bank selection instructions:

Bsf STATUS, RP0
Bcf STATUS, RP1

In the PIC16F877A, there are four banks; therefore you need two bits to make the switch between any of
them. An additional bit in the STATUS register is RP1, which is used to make the change between the
additional two banks.
One drawback of using BANKSEL is that it always generates two instructions even when the switch is
between bank0 and bank1 which only requires changing RP0. We could write the code above in the same
manner using Banksel

#include “P16F84A.inc”
Banksel TRISA
Movlw 5 ; move the constant 5 to the working register
Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register
Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)
Movf TRISA, W ; copy back the value 5 from TRISA to working register
Banksel PORTA
Nop ; this instruction does nothing, but it is important to write it for now

End

Check the program memory window to see how BANKSEL is replaced in the above code and the difference

in between the two codes in this page.

13

FLAGS

The PIC 16 series has three indicator flags found in the STATUS register; they are the C, DC, and Z flags. See

the description below. Not all instructions affect the flags; some instructions affect some of the flags while

others affect all the flags. Refer to the Appendix at the end of this experiment and review which instructions

affect which flags.

The MOVLW and MOVWF do not affect any of the flags while the MOVF instruction affects the zero flag.

Copying the register to itself does make sense now because if the file has the value of zero the zero flag will

be one. Therefore the MOVF instruction is used to affect the zero flag and consequently know if a register

has the value of 0. (Suppose you are having a down counter and want to check if the result is zero or not)

14

Types of Logical and Arithmetic Instructions and Result Destination

The PIC16 series logical and arithmetic instructions are easy to understand by just reading the instruction,

for from the name you readily know what this instruction does. There are the ADD, SUB, AND, XOR, IOR

(the ordinary Inclusive OR). They only differ by their operands and the result destination. The following

table illustrates:

 Type I – Literal Type Type II – File Register Type

Syntax xxxLW k

where k is constant

xxxWF f, d

where f is file register and

d is the destination (F, W)

Instructions Addlw, sublw, andlw, iorlw and

xorlw

Addwf, subwf, andwf, iorwf, xorwf

Operands 1. A literal (given by the

instruction)

2. The working register

1. A file register in the data

memory (either SFR or GPR)

2. The working register

Result destination The working register only Two Options:

1. W: the Working register

2. F: The same File given in the

instruction

How does it work? W = L operation W

F = F operation W

The value of F is overwritten by the

result, original value lost

W = F operation W

The value of F is the original value,

result stored in working register

instead

 The order is important in the subtract operation

Examples

(assuming you are

using the include

statement and

appropriate equ

statements for

defining GPRs)

xorlw 0BB

W = W ^ 0BB

sublw .85

W = 85d – W

Andwf TMR0, W

W = TMR0 & W

addwf NUM1, F

NUM1 = NUM1 + W

Subwf PORTA, F

PORTA = PORTA - W

 Notice that in subtraction, the W has the minus sign

Many other instructions of the PIC16 series instruction set are of Type II; refer back to the Appendix at the

end of this experiment for study.

15

Starting Up with basic programs

Program One: Fibonacci Series Generator

In mathematics, the Fibonacci numbers are the following sequence of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

The first two Fibonacci numbers are 0 and 1, and each remaining number is the sum of the previous two

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

include "p16f84a.inc"

Fib0 equ 20 ;At the end of the program the Fibonacci series numbers from 0 to 5 will

Fib1 equ 21 ;be stored in Fib0:Fib5

Fib2 equ 22

Fib3 equ 23

Fib4 equ 24

Fib5 equ 25

Clrw ;This instruction clears the working register, W = 0

clrf Fib0 ;The clrf instruction clears a file register specified, here Fib0 = 0

movf Fib0, w ;initializing Fib1 to the value 1 by adding 1 to Fib0 and storing it in Fib1

addlw 1

movwf Fib1

movf Fib0, W ; Fib2 = Fib1 + Fib0

addwf Fib1, W

movwf Fib2

movf Fib1, W ; Fib3 = Fib2 + Fib1

addwf Fib2, W

movwf Fib3

movf Fib2, W ; Fib4 = Fib3 + Fib2

addwf Fib3, W

movwf Fib4

movf Fib3, W ; Fib5 = Fib4 + Fib3

addwf Fib4, W

movwf Fib5

nop

end

1. Start a new MPLAB session, add the file example1.asm to your project

2. Build the project

3. Select Debugger Select Tool MPLAB SIM

4. Add the necessary variables and the working register to the watch window (remember that user

defined variables are found under the “Add Symbol” list)

16

5. Simulate the program step by step, analyze and study the function of each instruction. Stop at the

“nop” instruction

6. Study the comments and compare them to the results at each stage and after executing the

instructions

7. As you simulate your code, keep an eye on the MPLAB status bar below (the results shown in this

status bar are not related to the program, they are for demo purposes only)

The status bar below allows you to instantly check the value of the flags after each instruction is executed

In the figure above, the flags are z, DC, C

 A capital letter means that the value of the flag is one; meanwhile a small letter means a value of

zero. In this case, the result is not zero; however, digit carry and a carry are present.

Another faster method of simulation: Run and break points

Many times you will need to make some changes to your code, additions, omissions and bug fixes. It is not

then flexible to step into your code step by step to observe the changes you have made especially when

your program is large. It would be a good idea to execute your code all at once or up to a certain point and

then read the results from the watch window.

Now suppose we want to execute the Fibonacci series code at once - to do so, follows these steps:

1. Double click on the “nop” instruction (line 30), a red circle with a letter “B” inside is shown to the

left of the instruction. This is called a breakpoint. Breakpoints instruct the simulator to stop code

execution at this point. All instructions before the breakpoint are only executed

2a. Now press the run button

Run Animate

2b. Alternatively, you can instruct the IDE to

automatically step into the code an

instruction at a time by simply pressing

“animate”

You can control the speed of simulation as

follows:

1. Debugger Settings Animation/ Real time Updates

2. Drag the slider to set the speed of simulation you find convenient

17

Program Memory Space Usage

Though we have written about 31 lines in the editor, the total number of program memory space occupied

is far less, remember that directives are not instructions and that they are not downloaded to the target

microcontroller. To get an approximate idea of how much space does the program occupy: Select View

Program Memory Symbolic tab

Note that the last instruction

written is “nop” (end is a directive).

The total space occupied is only 18

memory locations

The “opcode” field shows the actual

machine code of each instruction

which is downloaded to the PIC

Program Two: Implementing the function Result = (X + Y) Z

This example is quite an easy one, initially the variable X, Y, Z are loaded with the values which

make the truth table

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

include "p16F84A.inc"

cblock 0x25

 VarX

 VarY

 VarZ

 Result

endc

 org 0x00

Main ;loading the truth table

 movlw B'01010101' ;ZYX Result

 movwf VarX ;000 0 (bit7_VarZ, bit7_VarY, bit7_VarX)

 movlw B'00110011' ;001 1 (bit6_VarZ, bit6_VarY, bit6_VarX)

 movwf VarY ;010 1 .

 movlw B'00001111' ;011 1 .

 movwf VarZ ;100 1 .

18

18

19

20

21

22

23

24

25

26

 ;101 0 .

 ;110 0 .

 ;111 0 (bit0_VarZ, bit0_VarY, bit0_VarX)

 movf VarX, w

 iorwf VarY, w

 xorwf VarZ, w

 movwf Result

 nop

 end

1. Start a new MPLAB session, add the file example2.asm to your project

2. Build the project

3. Select Debugger Select Tool MPLAB SIM

4. Add the necessary variables and the working register to the watch window (remember that user

defined variables are found under the “Add Symbol” list)

5. Simulate the program step by step, analyze and study the function of each instruction. Stop at the

“nop” instruction

6. Study the comments and compare them to the results at each stage and after executing the

instructions

19

Appendix A: Instruction Listing

20

Appendix B: MPLAB Tools

Another method to view the content of data memory is through the File Registers menu:

 Select View Menu File Registers

After building the Example1.asm codes, start looking at address 20

(which in our code corresponds to Fib0), to the right you will see the

adjacent file registers from 21 to 2F.

Observe that after code execution, these memory locations are filed

with Fibonacci series value as anticipated.

