University of Jordan
Faculty of Engineering and Technology
Department of Computer Engineering
Embedded Systems Laboratory 0907334

- —
-

i ™

Experiment 1: MPLAB and Instruction Set

Analysis 1

N0 0 0000R
=I0. 0..0. 0. 0. O
' ~ 00000 »» mmm—m®

PIC DEVELOPMENT
I e]

Objectives

The main objectives of this experiment are to familiarize you with:
+ The MOV instructions
¢ Writing simple codes, compiling the project and Code simulation
¢ The concept of bank switching
+ The MPASM directives

®

% Microcontroller Flags

72

¢ Arithmetic and logical operations

Pre-lab requirements

Before starting this experiment, you should have already acquired the MPLAB software and the related PIC
datasheets from drive D on any of the lab PC’s. You are encouraged to install the latest version of MPLAB
(provided in the lab) especially if you have Windows Vista

Starting up with instructions
Movement instructions

You should know by now that most PIC instructions (logical and arithmetic) work through the working register
“W?”, that is one of their operands must always be the working register “W?”, the other operand might be either a
constant or a memory location. Many operations store their result in the working register; therefore we can
conclude that we need the following movement operations:

1. Moving constants to the working register (Loading)
2. Moving values from the data memory to the working register (Loading)
3. Moving values from the working register to the data memory (Storing)

INSTRUCTIONS ARE CASE INSENSITIVE: YOU CAN WRITE IN EITHER SMALL OR CAPITAL
LETTERS

« MOVLW: moves a literal (constant) to the working register (final destination). The constant is
specified by the instruction. You can directly load constants as decimal, binary, hexadecimal, octal and
ASCII The following examples illustrate:

DEFAULT INPUT IS HEXADECIMAL

1. MOVLW 05 : moves the constant 5 to the working register

2. MOVLW 10 : moves the constant 16 to the working register.

3. MOVLW 0xAB : moves the constant ABp to the working register

4. MOVLW H'7F : moves the constant 7Fy, to the working register

5. MOVLW CD : WRONG, if a hexadecimal number starts with a character, you
should write itas 0CD or 0xCD or H'CD’

6. MOVLW d'10’ : moves the decimal value 10 to the working register.

7. MOVLW .10 : moves the decimal value 10 to the working register.

8. MOVLWb’10011110’ : moves the binary value 10011110 to the working register.

9. MOVLWO'76’ : moves the octal value 76 to the working register.

10. MOVLW A’g’ : moves the ASCII value g to the working register.

« MOVWEF: COPIES the value found in the working register into the data memory, but to which
location? The location is specified along with the instruction and according to the memory mabp.

So what is the memory map?

A memory map shows all available registers
(in data memory) of a certain PIC along with
their addresses, it is organized as a table
format and has two parts:

1. Upper part: which lists all the Special
Function Registers (SFR) in a PIC, these
registers normally have specific functions
and are used to control the PIC operation

2. Lower part: which shows the General
Purpose Registers (GPR) in a PIC; GPRs
are data memory locations that the user is
free to use as he wishes.

Memory Maps of different PICs are
different. Refer to the datasheets for the
appropriate data map

Examples:

1. MOVWF 01 : COPIES the value found in W to
TMRO

2. MOVWEF 05 : COPIES the value found in W to
PORTA

3. MOVWEF 0C : COPIES the value found in W to
a GPR (location 0C)

4. MOVWEF 32 : COPIES the value found in W to
a GPR (location 32)
5. MOVWF 52 : WRONG, out of data memory range
of the PIC 16F84a (GPR range is from 0C-4F
and 8C to CF)

« MOVF: COPIES a value found in the data
memory to the working register OR to itself.

Therefore we expect a second operand to specify
whether the destination is the working register or
the register itself.

For now: a 0 means the W, a 1 means the register
itself.

REGISTER FILE MAP -

PIC16F84A
File Address File Address
00h | Indirect addr{" | Indirect addr(" | 80n
O1h TMRO OPTION_REG | 81h
02h PCL PCL 82h
03h STATUS STATUS 83h
04h FSR FSR 84h
05h PORTA TRISA B5h
0&h PORTH TRISE BEh
07h — — 87h
08h EEDATA EECON1 Bh
0%h EEADR Eeconzil 89h
0Ah PCLATH PCLATH BAh
0Bh INTCOM INTCOM 8Bh
0Ch 8Ch
68

General Mapped

Purpose (accesses)

Registers in Bank O

(SRAM)
4Fh CFh
5Dh Doh

\H_______ N ._______ —
7Fh \ FFh
Bank O Bank 1

[J Unimplemented data memory location, read as 0"

Hote 1:

Not a physical register.

Examples:
MOVF 05, 0

1
2
3. MOVFO05,1
4

MOVF 2D, 1 : copies the content of the GPR 2D to itself

: copies the content of PORTA to the working register
MOVF 2D, 0 : copies the content of the GPR 2D
: copies the content of PORTA to itself

the working register

Now we will simulate a program in MPLAB and check the results
In MPLAB write the following program:

Movlw 5 ; move the constant 5 to the working register

Movwf 01 ; copy the value 5 from working register to TMRO (address 01)
Movlw 2 ; move the constant 2 to the working register

Movwf 0B ; copy the value 2 from working register to INTCON (address 0B)
Movf 01,0 ; copy back the value 5 from TMRO to working register

Nop ; this instruction does nothing, but it is important to write for now
End ; every program must have an END statement

After writing the above instructions we should build the project, do so by pressing build
myProject - MPLAB IDE v8.20
File Edit WYiew Project Debugger Programmer Tools Configure Window Help

M= B S o ? [Debug i EHBw® &Ea

F 5
N' i . .
A.J myProje X E\EmbeddedymyFirstFile.asm™®
EI[:' my B Movlw 2 ;jmove the constant 5 to the working
=-E3 MovwE 01 ;copy the walue 5 from working regist
Movlw 2 ;move the constant 2 to the working
.13 MovwE 0B ;copy the walue 2 from working regisi
- A . rcopy back the wvalue from 0 to
: Movf 01, O Py 1 5 TME
.23 Hop ;this instruction does nothing, but
- n ;Every Program must have an B stat
End Every g d END

An outb t window should show: BUILD SUCCEDDED

757 Output [l e

Build | Yersion Control | Find in Files | MPLAB SIM |

g "CAProgram FilesiMicrochip\MPASK Suite\MPASMWIN ewa" /g /1 BFE4A "myFirstF|
arming}203] EAEMBEDDEDWWYFIRSTFILE ASK 1 xEound opcode in column To{h ol
WWarning[203] EAEMBEDDEDVMYFIRSTFILE.ASM 2 : Found apeode in colurn 1. (Mowwf)

[{
Warning[203] EAEMBEDDEDVMYFIRSTFILE.ASKM 3 : Found apeode in colurmn 1. (Mol
Warming[203] EAEMBEDDEDVMYFIRSTFILE.ASKM 4 : Found opcode in column 1. (Mowwf)
[{
(

Waming[403] EAEMBEDDEDVWWYFIRSTFILE ASKM 5 - Found opcode in column 1. (Mo
WWamning[£03] EAEMBEDDEDVWYFIRSTFILE.ASM 6 : Found opcode in column 1. (Mop)
arning{205] EAEMBEDDEDWYFIRSTFILE ASM 7 : Found directive in colurmn 1. (End)
E ng: "CAProgram Filesi\MicrochiphMPASKM Suitelmplink.exe" fp1 6FG4A "myFirstFile.o" fu_—
HPLINE 4.30.01. Linker

Copyright (o) 2009 Microchip Technology Inc.
Errors o0

Loaded ENEmbeddedimyFirstFile.cof.
|

m

T

Debug build of project 'EAEmbeddedymyProjectmcp' succeeded.
Language tool versions: MPASKMWIN. exe w5.30.01, mplink.exe w4.30.01
Freprocessor symbol __DEBUG' is defined.

Mon Jun 1513:18:57 2009

BUILD SUCCEEDED L

4 | I 3

BUILD SUCCEED DOES NOT MEAN THAT YOUR PROGRAM IS CORRECT, IT SIMPLY MEANS THAT
THERE ARE NO SYNTAX ERRORS FOUND, SO WATCH OUT FOR ANY LOGICAL ERRORS YOU

MIGHT MAKE.

Notice that there are several warnings after building the file, warnings do not affect the execution of the
program but they are worth reading. This warning reads: “Found opcode in column 1”, column 1 is
reserved for labels; however, we have written instructions (opcode) instead thus the warning.

TO SOLVE THIS WARNING SIMPLY TYPE FEW BLANK SPACES BEFORE EACH INSTRUCTION OR PRESS

Preparing for simulation

Go to View Menu — Watch

File Edit | View | Project Debugger Programrmer

O =

n myPrg

v

Project
Output

Toolbars

CPU Registers

Call Stack
Disassembly Listing
EEPROM

File Registers

Flash Data
Hardware Stack
LCD Pixel

Locals

Mernory

Prograrm Memory
SFR / Peripherals
Special Function Registers
Watch

1 Memory Usage Gauge

TAB

7| Watch [|[-= 5]
Add SFR H Add Symbol

EEADR

] Update EECOM1 Symbol Hame Value

EECONZ
EEDATA
I F5H
IMDF
INTCOM
OPTIOM_REG
PCL
PCLATH
PORTA
PORTE
STATUS

—— - TR0
Watch 1 1hjga ll Wwiatch 4

From the drop out menu choose the registers we want to
watch during simulation and click ADD SFR for each one
Add the following:

e WREG: working register

e TMRO

e INTCON

You should have the following:

| Watch =nEch ==
add SFR| TMRO - |flu:||:| S_I,Iml:u:ul| | v|
Update Addres=ss= Symbol Name Value
THRO
0B INTCOM 0x00
WREG 0x00

Watch T | wiaich 2 | Watch 3 | watch 4|

Notice that the default format is in hexadecimal, to change it (if you need to) simply right-click on the
row — Properties and choose the new format you wish.

i Watch @lg

Watch Properties | Preferences I Eerﬂal|

Symbol: TMRO -

Size: [8 bitz v]

Format;

Eiyte Clrder; Einary
Decimal

ASCI

Memary: CHP Flaat
IEEE Float
Single Bit

From the Debugger Menu — choose Select Tool — then MPLAB SIM

AB IDE v&.30 - Watch

Project | Debugger | Programmer Tools Configure Window Help

i Select Tool k| v MNone % §

Clear Memory r 1 MPLABICD 2 [
\Embedded\myFirstFile.asm 2 PICkit 3

B Movliw 5 3 MPLAE SIM =

Movwi 01 4 REAL ICE om

Movlw 2 5 MPLAB ICD 3 2 t

Mowwif 0B ooy vann woawee e o XOI0

T NN S e T e

Now new buttons will appear in the toolbar:

A AT {’PEE‘E!‘

Step Into J (/Reset

1. To begin the simulation, we will start by resetting the PIC; do so by pressing the yellow reset
button. A greenarrow m) will appear next to the first instruction.

The green arrow means that the program counter is pointing to this instruction which has not
been executed yet.

Notice the status bar below:

MPLABE SIM PIC16F84A pe:l Wil zdcc 20 MHz bank(

Keep an eye on the value of the program counter (pc: initially 0), see how it changes as we
simulate the program

2. Press the “Step Into” button one at a time and check the Watch window each time an instruction
executes; keep pressing “Step Into” until you reach the NOP instruction then STOP.

Compare the results as seen in the Watch window with those expected.

Directives

Directives are not instructions. They are assembler commands that appear in the source
code but are not usually translated directly into opcodes. They are used to control the
assembler: its input, output, and data allocation. They are not converted to machine code
(.hex file) and therefore not downloaded to the PIC.

The “END” directive

If you refer to the Appendix at the end of this experiment, you will notice that there is no end instruction
among the PIC 16 series instructions, so what is “END”?

The “END” command is a directive which tells the MPLAB IDE that we have finished our program. It has
nothing to do with neither the actual program nor the PIC.

The END should always be the last statement in your program
Anything which is written after the end command will not be executed and any variable names will be
undefined.

Making your program easier to understand: the “equ” and “include” directives

As you have just noticed, it is difficult to write, read, debug or understand programs while dealing with
memory addresses as numbers. Therefore, we will learn to use new directives to facilitate program
reading.

The “EQU” directive
The equate directive is used to assign labels to numeric values. They are used to DEFINE CONSTANTS or to

ASSIGN NAMES TO MEMORY ADDRESSES OR INDIVIDUAL BITS IN A REGISTER and then use the name
instead of the numeric address.

Timer0 equ 01

Intcon equ 0B

Workrg equ0

Movlw 5 ; move the constant 5 to the working register

Movwf Timer0 ; copy the value 5 from working register to TMRO (address 01)
Movlw 2 ; move the constant 2 to the working register

Movwf Intcon ; copy the value 2 from working register to INTCON (address 0B)
Movf Timer0, Workrg ; copy back the value 5 from TMRO to working register

Nop ; this instruction does nothing, but it is important to write it for now
End

Notice how it is easier now to read and understand the program, you can directly know the actions
executed by the program without referring back to the memory map by simply giving each address a
name at the beginning of your program.

DIRECTIVES THEMSELVES ARE NOT CASE-SENSITIVE BUT THE LABELS YOU DEFINE ARE. SO YOU
MUST USE THE NAME AS YOU HAVE DEFINED IT SINCE IT IS CASE-SENSITIVE.

As you have already seen, the GPRs in a memory map (lower part) do not have names as the SFRs
(Upper part), so it would be difficult to use their addresses each time we want to use them. Here,
the “equate” statement proves helpful.

Num1 equ 20 ;:GPR @ location 20

Num?2 equ 40 :GPR @ location 40

Workrg equ0

Movlw 5 ; move the constant 5 to the working register

Movwf Num1 ; copy the value 5 from working register to Num1 (address 20)
Movlw 2 ; move the constant 2 to the working register

Movwf Num?2 ; copy the value 2 from working register to Num2 (address 40)
Movf Num1, Workrg ; copy back the value 5 from Num1 to working register

Nop ; this instruction does nothing, but it is important to write it for now
End

When simulating the above code, you need to add Num1, Num2 to the watch window, however,
since Num1 and Num?2 are not SFRs but GPRs, you will not find them in the drop out menu of the
“Add SFR”, instead you will find them in the drop out menu of the “Add symbol”.

| Watch [=][]
Add SFR| EEADR w | Add Symbaol iv'
Update Addres=ssz M
wiorkrg T

Wwiatch 1 | watch 2 | Watch 3 | Watch 4|

The “INCLUDE” directive

Suppose we are to write a huge program that uses all registers. It will be a tiresome task to define all
Special Function Registers (SFR) and bit names using “equate” statements. Therefore we use the include
directive. The include directive calls a file which has all the equate statements defined for you and ready to
use, its syntax is

#include "PXXXXXXX.inc" where XXXXXX is the PIC part number
Older version of include without #, still supported.

Example: #include “P16F84A.inc”

The only condition when using the include directive is to use the names as Microchip defined them which
are ALL CAPITAL LETTERS and AS WRITTEN IN THE DATA SHEET. If you don’t do so, the MPLAB will tell
you that the variable is undefined!

#include “P16F84A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TMRO ; copy the value 5 from working register to TMRO (address 01)
Movlw 2 ; move the constant 2 to the working register

Movwf INTCON ; copy the value 2 from working register to INTCON (address 0B)
Movf TMRO, W ; copy back the value 5 from TMRO to working register

Nop ; this instruction does nothing, but it is important to write it for now
End

The “Cblock” directive

You have learnt that you can assign GPR locations names using the equate statements to facilitate dealing
with them. Though this is correct, it is not recommended by Microchip as a good programming practice.
Instead you are instructed to use cblocks when defining and declaring GPRs. So then, what is the use of the
“equ” directive?

From now on, follow these two simple programming rules:
1. The “EQU” directive is used to define constants
2. The “cblock” is used to define variables in the data memory.
The cblock defines variables in sequential locations, see the following declaration

Cblock 0x35
VarX
VarY
VarZ
endc

Here, VarX has the starting address of the cblock, which is 0x35, VarY has the sequential address 0x36 and
VarZ the address of 0x37

What if [want to define variable at locations which are not sequential, that is some addresses are at 0x25
others at 0x40?

Simply use another cblock statement, you can add as many cblock statements as you need
The Origin “org” directive

The origin directive is used to place the instruction which exactly comes after it at the location it
specifies.

Examples:

Org 0x00

Movlw 05 ;This instruction has address 0 in program memory

Addwf TMRO ;This instruction has address 1 in program memory

Org 0x04 ;Program memory locations 2 and 3 are empty, skip to address 4 where it contains
Addlw 08 ;this instruction

Org 0x13 ;WRONG, org only takes even addresses

In This Course, Never Use Any Origin Directives Except For Org 0x00 And 0x04, Changing Instructions’
Locations In The Program Memory Can Lead To Numerous Errors.

The Concept of Bank Switching

Write, build and simulate the following program in your MPLAB editor. This program is very similar to the
ones discussed above but with a change of memory locations.

#include “P16F84A.inc”

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

Nop ; this instruction does nothing, but it is important to write it for now
End

After simulation, you will notice that both TRISA and OPTION_REG were not filled with the values
5 and 2 respectively! But why?

Notice that the memory map is divided into two columns, each column is called a bank, here we
have two banks: bank 0 and bank 1. In order to access bank 1, we have to switch to that bank first
and same for bank 0. But how do we make the switch?

Look at the details of the STATUS register in the figure below, there are two bits RP0O and RP1,
these bits control which bank we are in:

¢+ [fRPO is 0 then we are in bank 0
«+ [fRPOis 1 then we are in bank 1

We can change RPO by using the bcf/bsf instructions
«» BCF STATUS, RPO —->RP0 in STATUS is 0 - switch to bank 0
¢ BSF STATUS, RPO —->RP0 in STATUS is 1 —> switch to bank 1

BCF: Bit Clear File Register (makes a specified bit in a specified file register a 0)
BSF: Bit Set File Register (makes a specified bit in a specified file register a 1)

Try the program again with the following change and check the results:

#include “P16F84A.inc”

BSF STATUS, RPO

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

BCF STATUS, RPO

Nop ; this instruction does nothing, but it is important to write it for now
End

The “Banksel” directive

When using medium-range and high-end microcontrollers, it will be a hard task to check the memory map
for each register we will use. Therefore the BANKSEL directive is used instead to simplify this issue. This
directive is a command to the assembler and linker to generate bank selecting code to set the bank to the
bank containing the designated label

Example:
BANKSEL TRISA will be replaced by the assembler, which will automatically know which bank the register
is in and generate the appropriate bank selection instructions:

Bsf STATUS, RPO

Bcf STATUS, RP1

In the PIC16F877A, there are four banks; therefore you need two bits to make the switch between any of
them. An additional bit in the STATUS register is RP1, which is used to make the change between the
additional two banks.

One drawback of using BANKSEL is that it always generates two instructions even when the switch is
between bank0 and bank1 which only requires changing RP0. We could write the code above in the same
manner using Banksel

#include “P16F84A.inc”

Banksel TRISA

Movlw 5 ; move the constant 5 to the working register

Movwf TRISA ; copy the value 5 from working register to TRISA (address 85)
Movlw 2 ; move the constant 2 to the working register

Movwf OPTION_REG ; copy 2 from working register to OPTION_REG (address 81)

Movf TRISA, W ; copy back the value 5 from TRISA to working register

Banksel PORTA

Nop ; this instruction does nothing, but it is important to write it for now
End

Check the program memory window to see how BANKSEL is replaced in the above code and the difference
in between the two codes in this page.

FLAGS

The PIC 16 series has three indicator flags found in the STATUS register; they are the C, DC, and Z flags. See
the description below. Not all instructions affect the flags; some instructions affect some of the flags while
others affect all the flags. Refer to the Appendix at the end of this experiment and review which instructions
affect which flags.

The MOVLW and MOVWEF do not affect any of the flags while the MOVF instruction affects the zero flag.
Copying the register to itself does make sense now because if the file has the value of zero the zero flag will
be one. Therefore the MOVF instruction is used to affect the zero flag and consequently know if a register
has the value of 0. (Suppose you are having a down counter and want to check if the result is zero or not)

STATUS REGISTER

RW-0 RAW-0 RAW-0 R-1 R-1 RAW-x RA-x RAN-x
IRP RP1 RPO TO PD z pct?) ct!
bit 7 bit O
Legend:
R = Readable bit W = Writable bit U = Unimplemented bit, read as 0’
-n = Value at POR “1" = Bit is set ‘0" = Bit is cleared ¥ = Bit is unknown
bit 6-3 RP<1:0>: Register Bank Select bits (used for direct addressing)
00 =Bank 0
01 = Bank 1
10 = Bank 2
11 = Rank 3
bit 2 Z: Zero bit

1 = The result of an arithmetic or logic operation is zero
o = The result of an arithmetic or logic operation is not zero

it 1 DC: Digit Carry/Borrow bit (ADDWF, ADDLW, SUBLW, SUEWF instructions){)
1 = A carry-out from the 4th low-order bit of the result occurred
0 = No carry-out from the 4th low-order bit of the result

bit 0 C: Carry/Borrow bit!" (aDDwWF, ADDLW, SuELwW, suewr instructions)!!
1 = A carry-out from the Most Significant bit of the result occurred
0 = No carry-out from the Most Significant bit of the result occurred

Note 1: For Bormow, the polarity is reversed. A subtraction is executed by adding the two's complement of the
second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high-order or low-order
bit of the source register.

13

Types of Logical and Arithmetic Instructions and Result Destination

The PIC16 series logical and arithmetic instructions are easy to understand by just reading the instruction,
for from the name you readily know what this instruction does. There are the ADD, SUB, AND, XOR, IOR
(the ordinary Inclusive OR). They only differ by their operands and the result destination. The following

table illustrates:

Type I - Literal Type

Type II - File Register Type

Syntax xxxLW k xxxWF f,d
where k is constant where [is file register and
d is the destination (F, W)
Instructions Addlw, sublw, andlw, iorlw and | Addwf, subwf, andwf, iorwf, xorwf
xorlw
Operands 1. A literal (given by the 1. A file register in the data
instruction) memory (either SFR or GPR)

2. The working register

2. The working register

Result destination

The working register only

Two Options:
1. W: the Working register
2. F: The same File given in the
instruction

How does it work?

W =L operation W

F = F operation W

The value of F is overwritten by the
result, original value lost

W =F operation W

The value of F is the original value,
result stored in working register
instead

The order is important in the subtract operation

Examples
(assuming you are
using the include
statement and
appropriate equ
statements for
defining GPRs)

xorlw OBB
W =W ~ 0BB

sublw .85
W=854-W

Andwf TMRO, W
W =TMRO & W

addwf NUM1, F
NUM1 =NUM1+W

Subwf PORTA, F
PORTA = PORTA-W

Notice that in subtraction, the W has the minus sign

Many other instructions of the PIC16 series instruction set are of Type II; refer back to the Appendix at the
end of this experiment for study.

14

Starting Up with basic programs

Program One: Fibonacci Series Generator

In mathematics, the Fibonacci numbers are the following sequence of numbers:

011,2,3,5,8,13, 21, 34,55, 89

The first two Fibonacci numbers are 0 and 1, and each remaining number is the sum of the previous two

1 include "p16f84a.inc"”
2 Fib0 equ 20 ;At the end of the program the Fibonacci series numbers from 0 to 5 will
3 Fibl equ21 :be stored in Fib0:Fib5
4 Fib2 equ22
5 Fib3 equ 23
6 Fib4 equ 24
7 Fib5 equ25
8
9 Clrw ;This instruction clears the working register, W = 0
10 | clrf Fib0 ;The clrf instruction clears a file register specified, here Fib0 = 0
11 | movf Fib0O, w ;initializing Fib1 to the value 1 by adding 1 to Fib0 and storing it in Fib1
12 | addlw 1
13 | movwf Fibl
14
15 | movf FibO, W ; Fib2 = Fib1 + Fib0
16 | addwf Fib1l, W
17 | movwf Fib2
18
19 | movf Fibl, W ; Fib3 = Fib2 + Fib1
20 | addwf Fib2, W
21 | movwf Fib3
22
23 | movf Fib2, W ; Fib4 = Fib3 + Fib2
24 | addwf Fib3, W
25 | movwf Fib4
26
27 | movf Fib3, W ; Fib5 = Fib4 + Fib3
28 | addwf Fib4, W
29 | movwf Fib5
30 | nop
31 | end
1. Startanew MPLAB session, add the file examplel.asm to your project
2. Build the project
3. Select Debugger % Select Tool © ! MPLAB SIM
4. Add the necessary variables and the working register to the watch window (remember that user

defined variables are found under the “Add Symbol” list)

15

5. Simulate the program step by step, analyze and study the function of each instruction. Stop at the
“nop” instruction

6. Study the comments and compare them to the results at each stage and after executing the
instructions

7. As you simulate your code, keep an eye on the MPLAB status bar below (the results shown in this
status bar are not related to the program, they are for demo purposes only)

MPLAE SIPA PIC16FE4A polx0 Welf zDCC

The status bar below allows you to instantly check the value of the flags after each instruction is executed
In the figure above, the flags are z, DC, C
+ A capital letter means that the value of the flag is one; meanwhile a small letter means a value of
zero. In this case, the result is not zero; however, digit carry and a carry are present.

Another faster method of simulation: Run and break points

Many times you will need to make some changes to your code, additions, omissions and bug fixes. It is not
then flexible to step into your code step by step to observe the changes you have made especially when
your program is large. It would be a good idea to execute your code all at once or up to a certain point and
then read the results from the watch window.

Now suppose we want to execute the Fibonacci series code at once - to do so, follows these steps:
1. Double click on the “nop” instruction (line 30), a red circle with a letter “B” inside is shown to the
left of the instruction. This is called a breakpoint. Breakpoints instruct the simulator to stop code
execution at this point. All instructions before the breakpoint are only executed

25 movwE Fik5 | S'Imulator_SEtings - __ E!
30 @ nD]_:)l Osc / Trace | Break Cptions | Stimulus
- end Code Coverage | Animation / Realtime Updates | Limitations
Animate step ti
2a. Now press the run button mete siepime
Fastest D Slowest
2 e & IV EE G (No Delay) (5.0 Sec)

RunT T Animate [7] Enable Realtime watch updates

2b. Alternatively, you can instruct the IDE to
automatically step into the code an
instruction at a time by simply pressing
“animate”

You can control the speed of simulation as OK][Cancel Apply

follows: - - 4
1. Debugger & Settings & Animation/ Real time Updates
2. Drag the slider to set the speed of simulation you find convenient

16

Program Memory Space Usage

Though we have written about 31 lines in the editor, the total number of program memory space occupied
is far less, remember that directives are not instructions and that they are not downloaded to the target
microcontroller. To get an approximate idea of how much space does the program occupy: Select View &

Program Memory % Symbolic tab

2| Pragram Memaory

E=S IR0 Note that the

last instruction

‘ Line | Address ‘Opccude| Label |

1 Qo0 0103
2 001 01R0
3 ooz 0820
4 003 3EOQ1
=1 004 0oRl1
[005 0820
T 006 0721
il o7 Q0oRZ
a 008 082l
10 009 o722
11 0oR QO0A3
1z 00B 0822
13 ooc 0723
14 oD 0oR4g
15 00E 0823
16 0oF oT24
17 010 O0RS

18 0000

14 012 3IFFF

4|

I

- 0 . - . .
Ii_l written is “nop” (end is a directive).
CLEW e Lo
CLRF Fibo The total space occupied is only 18
MOVF Fib0, W memory locations
LDDLW 0x1
MOVWF Fibl .) e
MOVF Fib0, W The “opcode” field shows the actual
ADDWE Fibl, W machine code of each instruction
MOVWF FibZ

MOVF Fibl, W
ADDWF FibZ2, W
MOVWE Fib3
MOWVF Fib2, W
ADDWF Fib3, W
MOVWE Fib4
MOVF Fib3, W
ADDWF Fib4, W
MOVWE Fibs
HOP

which is downloaded to the PIC

| Opcode Hex | Machine| Symbalic |

Program Two: Implementing the function Result = (X +Y) & Z
This example is quite an easy one, initially the variable X, Y, Z are loaded with the values which

make the truth table

1 include "p16F84A.inc"

2

3 cblock 0x25

4 VarX

5 VarY

6 VarZ

7 Result

8 endc

9

10 org 0x00

11 | Main ;loading the truth table

12 movlw B'01010101' ;ZYX Result

13 movwf VarX ;000 0 (bit7_VarZ, bit7_VarY, bit7_VarX)
14 movlw B'00110011' ;000 1 (bit6_VarZ, bit6_VarY, bit6_VarX)
15 movwf VarY ;010 1

16 movlw B'00001111' ;011 1

17 movwf VarZ ;100 1

17

18 ;101 0
19 ;110 0 .
20 ;111 0 (bit0_VarZ, bit0_VarY, bit0_VarX)
21 movf VarX, w
22 iorwf VarY,w
23 xorwf VarZ, w
24 movwf Result
25 nop
26 end
1. Startanew MPLAB session, add the file example2.asm to your project
2. Build the project
3. Select Debugger % Select Tool “ ' MPLAB SIM
4. Add the necessary variables and the working register to the watch window (remember that user
defined variables are found under the “Add Symbol” list)
5. Simulate the program step by step, analyze and study the function of each instruction. Stop at the
“nop” instruction
6. Study the comments and compare them to the results at each stage and after executing the

instructions

18

Appendix A: Instruction Listing

Mnemonic, Description Cycles 1481t Opeode Status Notes
Operands MSh LSh Affected
BYTE-ORIENTED FILE REGISTER OPERATIONS
ADDWF f,d Add'W and f 1 o0 0111 dfff f£ff| CDCZ 1,2
ANDWF fd AND W with £ 1 o0 0101 dfff f£Eff Z 1,2
CLRF f Clear f 1 o0 0001 1fff f£Eff £
CLRW - Clear W 1 00 0001 OXXX XXXX Z
COMF fd Complement f 1 o0 100l dfff f£ff Z 1,2
DECF fd Decrement f 1 00 0011 dfff f£££ff Z 1,2
DECFSZ fd Decrement f, Skip if 0 1(2) oo 1011 d4fff £EfF 123
INCF f,d Increment f 1 00 1o01o dfff fE£ff £ 1,2
INCFSZ fd Increment f, Skip if 0 1(2) oo 1111 d4fff EEff 123
IORWF f,d Inclusive OR W with T 1 00 0100 dfff fE£ff £ 1,2
MOVE fd Mowve f 1 o0 1looo dfff f£E£fF Z 1,2
MOVWEF f Move Wio f 1 o0 o000 1fff f£Eff
NOP - No Operation 1 00 0000 OxxO 0000
RLF f.d Rotate Left f through Carry 1 00 1101 dfff f££ff C 1,2
RRF fd Rotate Right f through Carry 1 00 1loo0 dfff f£££fF [1,2
SUBWF fd Subtract W from f 1 oo oo01o dfff ffff| C,DCZ 1,2
SWAPF fd Swap nibbles in f 1 00 1110 dfff f£££fF 1,2
XORWF fd Exclusive OR W with f 1 o0 0110 dfff f£E£ff Z 1,2
BIT-ORIENTED FILE REGISTER OPERATIONS
BCF ib Bit Clear 1 01 00bb bEff f££ff 1,2
BSF fb Bit Setf 1 01 0lbb bfff f££ff 1,2
BTFSC b Bit Test f, Skip if Clear 1(2) 01 10bb bfff f££ff 3
BTFSS fb Bit Test f, Skip if Set 1(2) 01 11bb bfff f££ff 3
LITERAL AND CONTROL OPERATIONS
ADDLW k Add literal and W 1 11 11ix kkkk kkkk| CDCZ
ANDLW k AND literal with W 1 11 1001 kkkk kkkk Z
CALL k Call subroutine 2 10 o0kkk kkkk kkkk
CLRWDT - Clear Watchdog Timer 1 oo 0000 01lo oloo| TOPD
GOTO k Go to address 2 10 1kkk kkkk kkkk
IORLW k Inclusive OR literal with W 1 11 1000 kkkk kkkk Z
MOVLW k Move literal to W 1 11 ooxx kkkk kkkk
RETFIE - Return from intermupt 2 00 0000 0000 1001
RETLW k Return with literal in W 2 11 olxx kkkk kkkk
RETURN - Return from Subroutine 2 00 0000 0000 1000
SLEEF - Go into standby mode 1 oo 0000 01lo oo1l| TOPD
SUBLW k Subtract W from literal 1 11 11lox KkKkkk kkkk| CDCZ
FKORLW k Exclusive OR literal with W 1 11 1010 kkkk kkkk Z

19

Appendix B: MPLAB Tools

Another method to view the content of data memory is through the File Registers menu:

ct - MPLAE IDE v8.30 - File Registers

% Select View Menu%File Registers View Pru-_iect Debugger Programme

o) v Project
After building the Examplel.asm codes, start looking at address 20 71| Output
(which in our code corresponds to Fib0), to the right you will see the e
adjacent file registers from 21 to 2F. Toolbars k

. . . CPU Registers
Observe that after code execution, these memory locations are filed
Call Stack

with Fibonacci series value as anticipated.
Disassembly Listing

EEPROM
i . . File Registers
7 | File Registers -
Flash Data
Address |00 (01 (02|03 |04|05|06| 07|08 | 0S| 0R| 0B |
Hardware Stack
o0 -— 00 11 18 00 OO OO -- QOO0 OO0 00 00 ¢ o
10 00 00 oo oo il oo oo oo 00 oo 00 o0 ¢ LCD Pixel
20 00 01 01 02 03 05 00 00 0O 00 0O 00 ¢ Locals
30 00 00 00 OO0 OO0 OO OO OO0 00 00 00 00 ¢ Mermory
40 00 00 00 OO0 OO0 OO OO OO0 00 00 00 00 ¢ J .
=0 e o el dm e e m - Program Memaory
all m SFR / Peripherals
Hex |5-'f'm|:":'|i'3| Special Function Registers
Watch

1 Memory Usage Gauge

Simulator Trace

Simulator Logic Analyzer

20

