
1 | P a g e

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
 To become familiar with HD44780 controller based LCDs and how to use them

 Knowing the various modes of operation of the LCD (8-bit/4-bit interface, 2-lines/1-line, CG-ROM).

 Distinguishing between the commands for the instruction register and data register.

 Stressing software and hardware co-design techniques by using the Proteus IDE package to

simulate the LCD.

 Written by Eng. Ashraf Suyyagh and Eng. Enas Jaara |

5
Experiment 5: LCD

2 | P a g e

Introduction
What is an LCD?

A Liquid Crystal Displays (LCD) is a thin, flat display device made up of any number of color or
monochrome pixels arrayed in front of a light source or reflector. It is often utilized in battery-powered
electronic devices because it uses very small amounts of electric power.

LCDs have the ability to display numbers, letters, words and a variety of symbols. This experiment
teaches you about LCDs which are based upon the Hitachi HD44780 controller chipset. LCDs come in
different shapes and sizes with 8, 16, 20, 24, 32, and 40 characters as standard in 1, 2 and 4–line
versions. However, all LCD’s regardless of their external shape are internally built as a 40x2
format. See Figure 2 below

Figure 1: A typical LCD module

Figure 2: Different LCD modules shapes and sizes

Figure 3: Display address assignments for HD44780 controller based LCDs

3 | P a g e

LCD I/O

Most LCD modules conform to a standard interface specification. A 14-pin access is provided
having eight data lines, three control lines and three power lines as shown below. Some LCD
modules have 16 pins where the two additional pins are typically used for backlight purposes

Note: This image might differ from the
actual LCD module, the order can be from
left to right or vice versa therefore you
should pay attention, pin 1 is marked to
avoid confusion (printed on one of the
pins).

Powering u p the LCD requires connecting
three lines: one for the positive power Vdd

(usually +5V), one for negative power (or

ground) Vss. The Vee pin is usually

connected to a potentiometer which is used

to vary the contrast of the LCD display. We

will connect this pin to the GND. Figure 4: LCD pin-out

As you can see from the figure, the LCD connects to the microcontroller through three control lines: RS,
RW and E, and through eight data lines D0-D7.

With 16-pin LCDs, you can use the L+ and L- pins to turn the backlight (BL) on/off.

Figure 5: LCD pin-out details

4 | P a g e

Figure 6: A typical interfacing between a PIC16F877A and an LCD module

When powered up, the LCD display should show a series of dark squares. These cells are actually in
their off state. When power is applied, the LCD is reset; therefore we should issue a command to set it
on. Moreover, you should issue some commands which configure the LCD. (See the table which lists all
possible configurations below in the code and the explanation to each field)

Sending Commands/Data to the LCD

Using an LCD is a simple procedure once you learn it. Simply put you will place a value on the LCD lines

D0-D7 (this value might be an ASCII value (character to be displayed), or another hexadecimal value

corresponding to a certain command). So how will the LCD differentiate if this value on D0-D7 is

corresponding to data or command?

Observe the figure below, as you might see the only difference is in the RS signal (Register Select), this is

the only way for the LCD controller to know whether it is dealing with a character or a command!

Figure 7: Necessary control signals for Data/Commands

Setting the necessary control signals in software:

For this experiment assume that RS (Register Select) is connected to PORTA1 , R/W (Read/Write) to

PORTA2 (In this lab experiment we are only writing to the LCD, reading from the LCD is left to the

student as home study)and E(Enable) is connected to PORTA3. Moreover, assume that the LCD lines D0-

D7 are directly connected to PORTD.

5 | P a g e

we will introduce two subroutines; one will set the necessary control signals for sending a character

(send_char), the other for sending a command (send_cmd).

1
2
3
3
3
4

send_char
movwf PORTD
bsf PORTA,1
bsf PORTA, 3
nop
bcf PORTA, 3
bcf PORTA, 2
call delay
return

1
2
3
3
3
4

send_cmd
movwf PORTD
bcf PORTA, 1
bsf PORTA, 3
nop
bcf PORTA, 3
bcf PORTA,2
call delay
return

Steps to send character to LCD

1.Place the ASCII character on the D0-D7 lines

2. Register Select (RS) = 1 to send characters

3. "Enable" Pulse (Set High – Delay – Set Low)

4. Delay to give LCD the time needed to display the

character

Steps to send a command to LCD

1.Place the command on the D0-D7 lines

2. Register Select (RS) = 0 to send commands

3. "Enable" Pulse (Set High – Delay – Set Low)

4. Delay to give LCD the time needed to carry out the

command

Table 1: Sending Characters/Commands Steps

Displaying Characters

All English letters and numbers (as well as
special characters, Japanese and Greek
letters) are built in the LCD module in such a
way that it conforms to the ASCII
standard. In order to display a character,
you only need to send its ASCII code to the
LCD which it uses to display the character.

To display a character on the LCD simply
move the ASCII character to the working
register (for this experiment) then call
send_char subroutine.

Notice that from column 1 to D, the

character resolution is 5 pixels wide x 7

pixels high (5x7) (column 0 is a special

case, it is 5x8, but considered as 5x7, more

on this later) whereas the character

resolution of columns E and F is 5 pixels

wide x 10 pixels high (5x10). We should

change the resolution if we are to use

characters from different resolution

columns, this can be done using a command

discussed later.

Figure 8: LCD Characters Map

6 | P a g e

Figure 9: LCD command control codes

To issue any of these commands to the LCD, all you have to do is place the command value in the
working register, then issue the instruction “Call Send_cmd”

;***
; Explaining the commands and their parameters in the LCD command table
;***

Clear Display
Moving the value 01 to the working register followed by “call send_cmd” will clear the LCD display,
however the cursor will remain at it last position, so any future character writes will start from the last
location, to reset the cursor position use the Display and Cursor Home command.

Display and Cursor Home
Resets cursor location to position 00 of the LCD screen (Figure 3), future writes will start at the first
location of the first line.

Character Entry Mode
This command has two parameters 1/D and S:
1/D: By default, the cursor is automatically set to move from location 00 to 01 and so on (Increment
mode). Suppose now that you are to write from right to left (as in the Arabic language), then you have to
set the cursor to the Decrement mode.
S: Accompanies the D/C parameter, explained below

Display On/OFF and Cursor
This command has three parameters:
D: Turns on the display (when you see the black dots on the LCD, it means that it is POWERED on, but
not yet ready to operate), this command activates the LCD in order to be ready to use.
U: This displays the cursor (in the form of a horizontal line at the bottom of the character) when it is
high and turns the cursor off when it is low
B: If the underline cursor option is enabled, this will blink the cursor if high.

7 | P a g e

Display/Cursor Shift
All LCDs based on the HD44780 format - whatever their actual physical size is - are internally built in to
be 40 characters x 2 lines with the upper row having the display addresses 0-27H (27H = 39D  0-39 =

40 Characters!!) and the lower row from 40 H -67H. Now suppose you bought an LCD with the physical
size of 20 char. x 2 lines, when you start writing to the LCD and the cursor reaches locations 20D, 21 D,
and 22 D …, you will not see them BUT don’t worry, they are not lost. They were written in their
respective locations but you could not see them because your bought LCD is 20 visible Characters wide
from the outside and 40 from the inside. All you have to do is shift the display. So all you do is

1. Determine the direction of the shift (R/L)
2. Issue the shift Command D/C

R/L: Determines the direction of the shift, this might be useful if you are writing Arabic characters …
D/C: if this bit has a value of 0, the display is not shifted and the cursor moves the same way it was, if
the its value is logic high, the display is shifted once, you might need to issue this command multiple
times in order to shift the display by multiple locations!

Function Set
This command has three parameters:
8/4: Eight/Four bits mode
8 – Bit interface: you send the whole command/character (8 bits) in one stage to the D0-D7 lines
4 – Bit interface: you send the command/character in two stages as nibbles to D4-D7 lines.
When to use the 4-bit mode?

1. Interfacing LCD with older devices which have 4-bit wide I/O Bus
2. You don’t have enough I/O pins remaining, or you want to conserve the I/O pins for other HW

2/1: Line mode, determines whether you want to use the upper line of the LCD or both lines

10/7: Dot format, based on the LCD built-in characters table, note the following:
* 5x7 format (Default) is used whenever you use the characters found in columns 1 to D
* 5x7 format is also used whenever you use the built in characters in CG-RAM (EVEN THOUGH

THE CG-RAM CHARACTERs ARE 5X8!!!)
* 5x10 format is only used when displaying the characters found in columns E and F

*** In
LCD initialization, we normally set “Clear Display”, “Display and Cursor Home”, “Display On/OFF”
and “Cursor, and Function Set”, we place the value of the command then use the call send_cmd
instruction.

Set Display Address command
Syntax: 1AAAAAAA
This command allows you to move the cursor to whichever location you want, suppose you want to
start writing in the middle of the display (assuming the visible width of the LCD screen is 20), then from
Figure 2 you will observe that location 06 is approximately in the middle so you replace the A’s with 06:
1AAAAAAA 100001100x86
Moreover, suppose you wish to move to the second line which starts at location 40, same as above
1AAAAAAA  11000000  0xC0
After calculating this value, you place it in the working register and then use the call send_cmd
instruction.

8 | P a g e

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

;***
; EXAMPLE CODE 1
;***
; This code displays on the first “upper” row of the LCD the 26 English letters in alphabetical order
; The code starts with LCD initialization commands such as clearing the LCD, setting modes and
; display shifting.
;
; Outputs:
; LCD Control:
; RA1: RS (Register Select)
; RA3: E (LCD Enable)
; LCD Data:
; PORTD 0-7 to LCD DATA 0-7 for sending commands/characters
; Notes:
; The RW pin (Read/Write) - of the LCD - is connected to RA2
; The BL pin (Back Light) – of the LCD – is connected to potentiometer
;***
 include "p16f877A.inc"
;***
 cblock 0x20
 tempChar ;holds the character to be displayed
 charCount ;holds the number of the English alphabet
 lsd ;lsd and msd are used in delay loop calculation
 msd
 endc
;***
; Start of executable code
 org 0x000
 goto Initial
;***
; Interrupt vector
INT_SVC org 0x0004
 goto INT_SVC
;***
; Initial Routine
; INPUT: NONE
; OUTPUT: NONE
; RESULT: Configure I/O ports (PORTD and PORTA as output, PORTA as digital)
; Configure LCD to work in 8-bit mode, with two lines of display and 5x7 dot format.
; Set the cursor to the home location (location 00), set the cursor to the visible state
; with no blinking
;***
Initial
 Banksel TRISA ;PORTD and PORTA as outputs
 Clrf TRISA
 Clrf TRISD

 Banksel ADCON1 ;PORTA as digital output

 Movlw 07

 mowf ADCON1
 Banksel PORTA
 Clrf PORTA
 Clrf PORTD
 movlw d'26'

9 | P a g e

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

 Movwf charCount ; initialize charCount with 26 Number of Characters in the English language

 Movlw 0x38 ;8-bit mode, 2-line display, 5x7 dot format

 Call send_cmd
 Movlw 0x0e ;Display on, Cursor Underline on, Blink off
 Call send_cmd
 Movlw 0x02 ;Display and cursor home
 Call send_cmd
 Movlw 0x01 ;clear display
 Call send_cmd
;***
; Main Routine
;**
Main
 Movlw 'A'
 Movwf tempChar
CharacterDisplay ; Generate and display all 26 English Letters
 Call send_char
 Movf tempChar ,w ; ‘A’ has the ASCII code of 65 decimal (0x41), by

Addlw 1 ; adding 1 to it we have 66, which is B. Therefore, by
 movwf tempChar ; continuously adding 1 to tempChar we are cycling
 movf tempChar ,w ; through the ASCII table (here: alphabets)
 decfsz charCount
 goto CharacterDisplay
Mainloop
 Movlw 0x1c ;This command shifts the display to the right once
 Call send_cmd
 Call delay
 Goto Mainloop ; This loop makes the character rotate continuously
;**
send_cmd
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bcf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
send_char
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bsf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
delay
 movlw 0x80
 movwf msd
 clrf lsd
loop2

10 | P a g e

107

109

110

111

112

113

114

115

116

 decfsz lsd,f
 goto loop2
 decfsz msd,f
endLcd
 goto loop2
 return
;**
 End

Set CG-RAM Address command
Syntax: 01AAAAAA

If you give a closer look at Figure 8, you will clearly see that the table only contains English and
Japanese characters, numbers, symbols as well as special characters! Suppose now that you would like
to display a character not found in the built-in table of the LCD (i.e. an Arabic Character). In this case we
will have to use what is called the CG-RAM (Character Generation RAM), which is a reserved memory
space in which you could draw your own characters and later display them.

Observe column one in Figure 8, the locations inside this column are reserved for the CG-RAM. Even
though you see 16 locations (0 to F), you only have the possibility to use the first 8 locations 0 to 7
because locations 8 to F are mirrors of locations 0 – 7.

So, to organize things, in order to use our own characters we have to do the following:

1. Draw and store our own defined characters in CG-RAM
2. Display the characters on the LCD screen as if it were any of the other characters in the table

Drawing and storing our own defined characters in CG-RAM
As stated earlier, we have eight locations to store our characters in. So how do we choose which
location out of these to start drawing and building our characters in?
The answer is quite simple; follow this rule as stated in the datasheet of the HD44780 controller

1. To write (build/store a character in location 00 (crossing of the row and column)), you send the
CG-RAM address command as follows: 01AAAAAA  01000000  0x40

2. However, to write in any location from 01 to 07, you have to skip eight locations (WHY?)
So the CG-RAM address command will send 0x48 (to store a character in location 1), 0x50 (to
store a character in location 2) and so on...

So up to this point we have defined where to write our characters but not how to build them!
This is the fun part, draw a 5x8 Grid and start drawing your character inside, then replace
each shaded cell with one and not shaded ones with zero. Append three zeros to the left (B5-B7)
and finally transform the sequence into hexadecimal format. This is the sequence which you will
fill in the CG-RAM SEQUENTIALLY once you have set the CG-RAM Address before.

11 | P a g e

B4 B3 B2 B1 B0



B7 B6 B5 B4 B3 B2 B1 B0



 0 0 0 0 1 1 1 0 0x0E

 0 0 0 1 0 0 0 1 0x11

 0 0 0 0 1 1 1 0 0x0E

 0 0 0 0 0 1 0 0 0x04

 0 0 0 1 1 1 1 1 0x1F

 0 0 0 0 0 1 0 0 0x04

 0 0 0 0 1 0 1 0 0x0A

 0 0 0 1 0 0 0 1 0x11

Displaying the user generated (drawn) characters on the LCD screen

Simply,if we stored our character in location 0, we move 0 to the working register then issue the “call
send_char” command, if we stored it in location 2, move 2 to the working register and so on ….

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

Example
DrawStick1 Setting the CGRAM address at which we draw the stick man
 Movlw 0x40 ;Here it is address 0x00 in Figure 8 which transforms into
 Call send_cmd ; command 0x40
 Movlw 0X0E Sending data that implements the Stick man
 Call send_char ; Notice the address where to store the character in CG-RAM
 Movlw 0X11 ;is a command thus use send_cmd, whereas the
 Call send_char ;data bits of the stickman are sent as Data
 Movlw 0X0E ;using send_char
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X1F
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X11
 Call send_char
 Return

12 | P a g e

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

;**
; EXAMPLE CODE 2
;**
; This code stores two shapes of a stickman, one in location 00 (of Figure 8), and another at location
; 01. The first stickman is written on the leftmost location of the upper line, the second stick man
; shape is also written above the first one, then the first stick man is rewritten on the same location
; that is display: first stickman shape  second stickman shape  first stickman shape and so on ..
; thus the stickman will appear as if it is moving ! 
;
; Outputs:
; LCD Control:
; RA1: RS (Register Select)
; RA3: E (LCD Enable)
; LCD Data:
; PORTD 0-7 to LCD DATA 0-7 for sending commands/characters
; Notes:
; The RW pin (Read/Write) - of the LCD - is connected to RA2
; The BL pin (Back Light) – of the LCD – is connected potentiometer
;**
 include "p16f877A.inc"
;**
 cblock 0x20
 lsd ;lsd and msd are used in delay loop calculation
 msd
 endc
;**
; Start of executable code
 org 0x000
 goto Initial
;**
; Interrupt vector
INT_SVC org 0x0004
 goto INT_SVC
;**
; Initial Routine
; INPUT: NONE
; OUTPUT: NONE
; RESULT: Configure I/O ports (PORTD and PORTA as output, PORTA as digital)
; Configure LCD to work in 8-bit mode, with two lines of display and 5x7 dot format.
; Set the cursor to the home location (location 00), set the cursor to the visible state
; with no blinking
;**
Initial
 Banksel TRISA ;PORTA and PORTD as outputs
 Clrf TRISA
 Clrf TRISD

 Banksel ADCON1 ;PORTA as digital output

 movlw 07

 mowf ADCON1
 Banksel PORTA
 Clrf PORTA
 Clrf PORTD
 Movlw 0x38 ;8-bit mode, 2-line display, 5x7 dot format

13 | P a g e

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

 Call send_cmd
 Movlw 0x0e ;Display on, Cursor Underline on, Blink off
 Call send_cmd
 Movlw 0x02 ;Display and cursor home
 Call send_cmd
 Movlw 0x01 ;clear display
 Call send_cmd
 Call DrawStick1 ;The subroutines draw and store the Stick man inside the
 Call DrawStick2 ;CG-RAM. This DOES NOT mean that the character is
 ;displayed on the LCD, it was only stored inside the CG-RAM
 ;of the LCD.
 Movlw 0x01 ;the datasheet says you have to clear display command after
 Call send_cmd ;storing the characters or the code will not work

;**
; Main Routine
;**
Main
 Movlw 0x00 ;Display character stored in location 00 (Figure 8), which in
 Call send_char ;this case is our first stickman in CG-RAM
 Movlw 0x02 ;Cursor Home Command
 Call send_cmd
 Movlw 0x01 ;Display character stored in location 00 (Figure 8), which in
 Call send_char ;this case is our first stickman in CG-RAM
 Movlw 0x02 ;Cursor Home Command
 Call send_cmd
 Goto Main ; This loop makes the character rotate continuously
;**
send_cmd
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bcf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
send_char
 movwf PORTD ; Refer to table 1 on Page 5 for review of this subroutine
 bsf PORTA, 1
 bsf PORTA, 3
 nop
 bcf PORTA, 3
 bcf PORTA, 2
 call delay
 return
;**
delay
 movlw 0x80
 movwf msd
 clrf lsd
loop2
 decfsz lsd,f

14 | P a g e

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

145

146

147

148

149

150

151

152

153

154

155

 goto loop2
 decfsz msd,f
endLcd
 goto loop2
 return
;**
DrawStick1 Setting the CGRAM address at which we draw the stick man
 Movlw 0x40 ; Here it is address 0x00 in Figure 8 which transforms
 Call send_cmd ; into command 0x40
 Movlw 0X0E ;Sending data that implements the Stick man
 Call send_char
 Movlw 0X11
 Call send_char
 Movlw 0X0E
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X1F
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X11
 Call send_char
 Return
;**
DrawStick2 ;Setting the CGRAM address at which we draw the stick man
 Movlw 0x48 ;Here it is address 0x01 in Figure 8 which transforms
 Call send_cmd ; into command 0x48
 Movlw 0X0E ;Sending data that implements the Stick man
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X15
 Call send_char
 Movlw 0X0E
 Call send_char
 Movlw 0X04
 Call send_char
 Movlw 0X0A
 Call send_char
 Movlw 0X0A
 Call send_char
 Return
;**
 End

15 | P a g e

