
Page 1 of 9 
 

 
 

 

 
 
 

 

 

 

 

University of Jordan 

Faculty of Engineering and Technology 

Department of Computer Engineering 

Embedded Systems Laboratory 0907334 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

 

 Written by Eng. Enas Jaara |  

8 

Experiment 8: ANALOG-TO-DIGITAL 
CONVERTER (A/D) MODULE 

 
 



Page 2 of 9 
 

Objectives 
 To familiarize you with the built-in A/D hardware module. 

 

Pre-lab requirements 

 Review the PIC16F877A datasheet section on the AD module.  

 

Appendix A quickly reviews the AD module 

Overview  

An analog to digital converter converts analog voltages to digital information that can be used by a 
computer. In almost in all digital systems, there is a frequent need to convert analog signals 
generated by peripheral devices such as microphones, sensors, and etc. into digital values that can 
be stored and processed. As an example, temperature and brightness are changing continuously.  
This experiment will focus on A/D conversion by using the PIC16F877A Analog-To-Digital 
Converter. 

The idea behind the code 

Select RAO as input connected to potentiometer, get the result of a A/D conversion, convert the 
result into the BCD format and finally the result (the only low 8 bits) will be displayed on three 7-
segment displays, The 7 segments display will use Time Division Multiplexing to display a 3-digit 
values. 

A Detailed View of the Interworking of the System 
Based on the above discussion, we will further elaborate how this system works.  

1. Initially, the system should be initialized as follows: 

 We need to connect an analogue signal to the PIC, we shall use either one of PORTA or 

PORTE, since both offer analogue input interfacing to the PIC. We will specify which 

PORT and which exact pin of the port to be used as analogue or digital through the use 

of the ADCON1 register. In this experiment we chose RA0 as the analogue input 

(corresponding to channel 0 “AN0” of the AD module) 

 We will configure the AD module as follows, power on the module (set ADON), and 

choose the analogue channel 0 “AN0” as the analogue input of the AD module by setting 

CH2, CH1 and CH0 as zeros. We will set the voltage references to be between 0 and 5 

volts (why?) and finally the result is to be right justified, that is the lower 8-bits will 

reside in ADRESL and the higher 2 bits will reside in ADRESH. In this program, we will 

choose to ignore ADRESL and only deal with the 8-bit digitized value to simplify 

program development.  

 We chose a conversion speed of Fosc/8, therefore ADCON1 will have the value of 0x8E 

 We implemented the code such that the main functionality is to convert analogue 
signals into digital ones and save them into ADRESL in a continuous fashion such that 
we will always have updated and recent values of the potentiometer, this is the code of 
the main subroutine will have all other actions: CHANGE _To_BCD ,this subroutine is 
used to convert the result of the conversion into BCD values (Units , Tens , Hundreds), 
then display the result on the 7 segment display , Time Division Multiplexing used to 
display a 3-digit values(Units , Tens , Hundreds). 
 



Page 3 of 9 
 

2. As stated above, the main subroutine is to continuously update ADRESL register with a recent 

digitized value of the potentiometer. The routine starts by starting the conversion process (bsf 

ADCON0, GO), the value of ADRESL is not read until we are sure that the conversion process has 

truly finished. This is done through polling the ADIF flag (remember that we have not enabled 

the interrupt for AD, yet the flags of interrupts are set and cleared no matter whether they were 

enabled or not, this is why polling is possible). When the conversion is finished, the value of 

ADRESL is copied into TEMP register in order to display it on the 7 segment display!  

The steps should be followed for doing an A/D Conversion: 

 

• Port configuration 
The I/Os pin should be configured as analog by setting the associated TRIS and 

PCFG3:PCFG0 bits. 

 

• Channel selection 

The CHS bits of the ADCON0 register. 

 

• ADC voltage reference selection 
The PCFG bits of the ADCON1 register. 

 

•ADC conversion clock source 
The source of the conversion clock is software selectable via the ADCS bits of the 

ADCON1 and ADCON0 registers. 

 
 

• Interrupt control 
The ADC module allows for the ability to generate an interrupt upon completion of 

an Analog-to-Digital conversion, but we have chosen to use the ADC without 

interrupts and use polling instead.  

 

•Results formatting 
The ADFM bit of the ADCON1 register controls the output format. 

 

• ADC module configuration 
 

•Turn on ADC module 
To enable the ADC module, the ADON bit of the ADCON0 register must be set to a ‘1’. 

 



Page 4 of 9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;Main Subroutine;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

 

This subroutine shows theA/D Conversion Procedure. 

 
Start conversion by setting the GO/DONE bit. Poll the AD interrupt flag ADIF 

(interrupts disabled) to check whether conversion has finished or not. Clear the ADC 

interrupts flag (required). Finally Read ADC Result found in ADRESH and/or 

ADRESL. Convert Result into BCD Format and display it on the 7 segments displays. 

 

 
 

Is ADIF =1 

 

(Wait for conversion to 

complete) 

NO 

Clear the A/D interrupt flag 

ADC module 

configuration 

Display Result on 7 segments displays 

Initial 

YES 

 

Get A/D Result 

Set the GO/DONE bit. 

 

Convert A/D Result to BCD 

Main  
  MOVLW     8EH         ;A/D data right justified 
  MOVWF     ADCON1            ; RA0  is analogue input 
  Banksel      PORTA                ;BANK 0 
  MOVLW     41H         ;A/D enabled 
  MOVWF     ADCON0           ;select CLOCK is fosc/, 
  CALL           DELAY                
  BSF             ADCON0,GO        ;startup ADC divert 
WAIT 
  BTFSS       PIR1,ADIF        ;Is the convert have finished? 
  GOTO        WAIT                  ; wait for the convert finished 
  bcf        PIR1, ADIF       ; Clear the A/D flag 
 Banksel     TRISA 
 MOVF        ADRESL,W          ;read the result of convert  
 Banksel    PORTA  
 MOVWF    TEMP                     ; keep in temporary register 
 CALL      CHANGE_To_BCD    ; call result convert subr. 
 CALL      DELAY  
 CALL      DISPLAY                      ; call display subroutine 
 CALL      DELAY  
 GOTO     Initial                           ; Do it again 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Page 5 of 9 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 ;****************************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
;Code Function:Select RAO as input connected to potentiometer,  
;get the result of a A/D conversion ,convert the result into the BCD format 
; and finally the result (the only low 8 bits) will be displayed on 7-segment displays. 
 
#INCLUDE<P16F877a.INC>      
 
TEMP               EQU    20H      ;temporary register 
hundreds        EQU    21H      ;the hundred bit of convert result 
tens                  EQU    22H      ;the ten bit of convert result 
units                EQU    23H      ;the ones bit of convert result 
;**************************************************** 
   ORG       00H              
   NOP                        
    GOTO      Initial           
 
;*******************Initial subroutine***************************** 
Initial  
                   CLRF      hundreds 
  CLRF      tens 
  CLRF      units  
  Banksel   TRISA         ;select bank 1 
    MOVLW     01H           ;PORTA bit Number0 is INPUT 
    MOVWF     TRISA 
    CLRF      TRISD                                       ;All of the PORTD bits are outputs 
;***********************MAIN program*********************** 
Main  
  MOVLW     8EH                 ;A/D data right justified 
    MOVWF     ADCON1              ;only select RA0 as ADC PORT,the rest are data PORT 
    Banksel   PORTA        ;BANK 0 
    MOVLW     41H 
    MOVWF     ADCON0              ;select CLOCK is fosc/8,A/D enabled 
    CALL      DELAY                     ;call delay program,ensure enough time to sampling 
    BSF       ADCON0,GO              ;startup ADC divert 
WAIT 
    BTFSS       PIR1,ADIF                ;is the convert have finished? 
    GOTO        WAIT                       ;wait for the convert finished 
    Bcf             PIR1, ADIF              ; Clear the A/D flag 
  Banksel     TRISA 
    MOVF        ADRESL,W              ;read the result of convert    
  Banksel     PORTA 
  MOVWF     TEMP         ;keep Result in temporary register 
  CALL           CHANGE_To_BCD    ;call result convert subroutine 
  CALL           DELAY  
  CALL           DISPLAY                   ;call display subroutine 
  CALL           DELAY  
    GOTO          Initial                        ;Do it again 
;************************Convert subroutine******************** 
CHANGE_To_BCD 
gen_hunds 
  MOVLW     .100                        ;sub 100,result keep in W 
                   SUBWF     TEMP,0 
    BTFSS     STATUS,C                      ;judge if the result biger than 100 
    GOTO      gen_tens                        ;no,get the ten bit result 
   MOVWF     TEMP                          ;yes,result keep in TEMP 
    INCF      hundreds,1                    ;hundred bit add 1 
    GOTO      gen_hunds                    ;continue to get hundred bit result 
gen_tens 
    MOVLW     .10                             ;sub 10,result keep in W 
    SUBWF     TEMP,0           
    BTFSS     STATUS,C                    ;judge if the result biger than 10 
   GOTO      gen_ones                     ;no,get the Entries bit result 
    MOVWF     TEMP                        ;yes,result keep in TEMP 
    INCF      tens,1                            ;ten bit add 1 
    GOTO      gen_tens                   ;turn  to continue get ten bit 



Page 6 of 9 
 

 

  

66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 

gen_ones 
    MOVF      TEMP,W 
    MOVWF     units                       ;the value of Entries bit 
    RETURN 
 
;**************************Display subroutine******************** 

DISPLAY 
  MOVF     hundreds,W                          ;display Hundreds bit 
  CALL     TABLE 
  MOVWF    PORTD 
  BCF      PORTA,3 
  CALL     DELAY 
  CALL     DELAY 
  BSF      PORTA,3 
   
  MOVF     tens,W                                   ;display Tens bit 
  CALL     TABLE 
  MOVWF    PORTD 
  BCF      PORTA,4 
  CALL     DELAY 
  CALL     DELAY 
  BSF      PORTA,4 
   
  MOVF     units,W                                ;display Units bit 
  CALL     TABLE 
  MOVWF    PORTD 
  BCF      PORTA,5 
  CALL     DELAY 
  CALL     DELAY 
  BSF      PORTA,5 
  RETURN 
  

;********************************************************* 
TABLE  
  ADDWF    PCL, 1 
  RETLW B'11000000'  ;'0' 
  RETLW B'11111001'  ;'1'  
  RETLW B'10100100'  ;'2'    
  RETLW B'10110000'  ;'3'    
  RETLW B'10011001'  ;'4' 
  RETLW B'10010010'  ;'5'   
  RETLW B'10000010'  ;'6' 
  RETLW B'11111000'  ;'7'   
  RETLW B'10000000'  ;'8' 
  RETLW B'10010000'  ;'9' 
 
;***************************Delay subroutine*********************** 
DELAY 
   MOVLW    0xFF 
   MOVWF    TEMP 
L1  DECFSZ   TEMP,1 
   GOTO     L1 
   RETURN 
 
;********************************************************* 
  END                        ;program end 



Page 7 of 9 
 

Appendix A 

Analog-to-Digital Conversion (ADC) 
  

An analog-to-digital converter, or simply ADC, is a module that is used to convert an analog signal 

into a digital code. In the real world, most of the signals sensed and processed by humans are 

analog signals. Analog-to-digital conversion is the primary means by which analog signals are 

converted into digital data that can be processed by Microcontroller for various purposes. 

 

Sensors signals is an analog quantity, and digital systems often use signals to implement 

measurement, control, and protection functions so it is the necessary to convert the analog signal 

to digital information. 

There's generally a lot of confusion about using the A/D inputs, but it's actually really very simple - 

it's just a question of Extraction the information you need out of the datasheets.  

There are four main registers associated with using the analogue inputs; these are summarized in 

the following table: 

Main registers used for Analog-to-Digital Conversion. 

Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 

ADRESH A/D Result Register - High Byte 

ADRESL A/D Result Register - Low Byte 

ADCON0 ADCS1 ADCS0 CHS2 CHS1 CHS0 GO/DONE - ADON 

ADCON1 ADFM ADCS2 - - PCFG3 PCFG2 PCFG1 PCFG0 

 ADCON0 and ADCON1 are the registers that control the A/D conversation process.  

 ADRESH and ADRESL are the registers that return the 10-bit result of the analogue 

to digital conversion, the only slightly tricky thing about them is that they are in 

different memory banks. 

RESULT FORMATTING: 

The 10-bit A/D conversion result can be supplied in two formats, left justified or 

right justified. The desired formatting is chosen by sitting the ADFM bit in the ADCON0 

register. 

 

 

  



Page 8 of 9 
 

 

ADCON0 Details 

ADON (bit 0), turns the A/D On (when = 1) or off (when = 0), thus saving the power it 

consumes. 

 GO/DONE (bit 2), this bit has a dual function, the first is that by setting the bit it initiates 

the start of the analogue to digital conversion process, the second is that when the bit is 

automatically cleared when the conversion is complete, it can be polled to check if 

conversion has ended before initiating a subsequent conversion. 

CHS2, CHS1 and CHS0 (bits 3 - 5), the 

channel selection bits, choose one channel 

among the available eight AD analogue 

channels and specify which one is to be used 

as an input for the AD module for digitization. 

Be careful that the first five channels AN0-

AN4 map to pins (RA0-RA3, RA5). Further 

notice that AN4 uses digital pin RA5, not RA4 

as you would expect. And the remaining three 

channels AN5-AN7 map to pins (RE0-RE2). 

See adjacent figure. 

ADCS1 and ADCS0 (bits 6 - 7): A/D 

Conversion Clock Select bits (see ADCS2) 

 

 

 

 

CHS2 CHS1 CHS0 Channel Pin 

0 0 0 Channel0 RA0/AN0 

0 0 1 Channel1 RA1/AN1 

0 1 0 Channel2 RA2/AN2 

0 1 1 Channel3 RA3/AN3 

1 0 0 Channel4 RA5/AN4 

1 0 1 Channel5 RE0/AN5 

1 1 0 Channel6 RE1/AN6 

1 1 1 Channel7 RE2/AN7 

Left justified 

Right justified 

justified 



Page 9 of 9 
 

ADCON1 Details 

 ADFM (bit 7), the Result Format Selection Bit, selects if the output is Right Justified (bit 

set) or Left Justified (bit cleared). For full digitization precision, the whole 10 bits are to be 

used. 

ADCS2 (bit 6), which set the clock 

frequency used for the analogue to 

digital conversion, this clock is 

divided down from the system clock 

(or can use an internal 

oscillator), bit 4 and bit 5 

Unimplemented: Read as ‘0’. 

 

 

 

 

 

 

 

 

 

 

 

PCFG3:PCFG0 (bit 

3:0): A/D Port 

Configuration 

Control bits 

 

 

 

Example  

If we make 

ADCON1 = 0x80, 

then we have 8 

analog channels, 

and Vref+ =  

VDD, and Vref- = 

Vss. 

 

 

 

ADCON1 

ADCS2 

ADCON0 

<ADCS1:ADCS0> 
A/D Conversion Clock Select bits. 

0 0 0 Fosc/2 

0 0 1 Fosc/8 

0 1 0 FOsc/32 

X 1 1 FRC (clock derived from a dedicated 

Internal oscillator = 500 kHz max.) 

1 0 0 Fosc/4 

1 0 1 Fosc/16 

1 1 0 Fosc/64 


