

1

University of Jordan

Faculty of Engineering and Technology

Department of Computer Engineering

Embedded Systems Laboratory 0907334

Objectives
The main objectives of this experiment are to familiarize you with:

 Writing PIC programs in C

 Setting up MPLAB IDE projects to use the HI-TECH C compiler

 Becoming familiar with HI-TECH C primitives, built-in function in use with 10/12/16 MCU Family

Prepared by Eng. Enas Ja’ra

9

Experiment 9: Using HI-TECH C

Compiler in MPLAB

2

INTRODUCTION

So far in this lab course, PIC assembly programming has been introduced, however, in practice, most of the

industrial and control codes are written in High Level Languages (abbreviated as HLL) the most common of

which is the C programming language. The use of high level languages is preferred due to their simplicity

which allows for faster program development (especially for large and very complex programs), easier

debugging, and for easier future code maintainability, this will provide developers with shorter time to

market advantages in a world where competition is at its prime to introduce new commercial products. On

the other hand, HLLs assembled codes are often longer (due to inefficient compilers, aggressive and

advanced optimizing compilers are often used to yield better results). Longer codes are at a disadvantage

since memory space is limited in microcontrollers not to mention that longer codes take more time to

execute. Expert assembly programmers can rewrite certain pieces of code in a very optimized and short

fashion such that they execute faster, this is very important especially when real time applications are

concerned. This direct use of assembly language requires that the programmer knows the problem in hand

very well and that one is experienced in both software and target microcontroller hardwrae limitations.

Often, programmers combine in between the use of C and Assembly language in the same developed source

code.

There are many C compilers available commercially, such as mikroC, CCS and HI-TECH among others. This

experiment introduces the “free” Lite version C compiler from HI-TECH software bundled with MPLAB, in

contrast to the Pro versions of compilers commercially available from HI-TECH and others, the compiler

and assembler don’t use aggressive techniques and the resultant assembly codes are larger in size.

THIS PART ASSUMES YOU HAVE ALREADY SAVED A FILE WITH A C EXTENSION AND YOU HAVE ALREADY

INSTALLED THE HI-TECH C PRO FOR THE PIC10/12/16 MCU FAMILY COMPILER

Create a project in MPLAB in the same

steps as was shown in Exp 0, the only

difference is in the step of selecting a

language toolsuite; “ Active Toolsuite”

dialog box:

In this step where you get to specify the

toolsuite associated with the project,

you are not associating the project with

the MPASM compiler as previously done,

but instead we will be using the HI-

TECH C compilers for Microchip devices

In the Active Toolsuite drop down menu,
select HI-TECH Universal Toolsuite 
Click next.

The next steps will proceed as usual:

3

Browse to the directory where

you saved your C file. Give your

project a name  Save  Next. If

you navigated correctly to your

file destination you should see it

in the left pane otherwise choose

back and browse to the correct

path. When done Click add your

file to the project (here:

FirstCFile.c). Make sure that the

letter C is beside your file and not

any other letter  Click next

Click Finish.

As before, you should see your C file under Source file list, now you are ready to begin.

Double click on the FirstCFile.C file in the project file tree to open. This is where you will write your

programs, debug and simulate them.

CORRECT WRONG

4

The proceeding parts assume that you have basic knowledge of programming in C. We will present the C

language in general context then we’ll introduce it within the contest of use in PIC programming. The

following discussion attempts to write and simulate a simple C program in MPLAB and check the results

In MPLAB, inside your newly created project from above, write the following:

#include <htc.h>
void main(void) // every C program you write needs a function called main.
{

}

Notice that comments are indicated with // instead of ‘;’

After writing the above EMPTY program we should build the code to ensure that MPLAB IDE and HI-TECH

C are properly installed. Select Build from the Project menu, or choose any of MPLAB IDE’s shortcuts to

build the project — you can, for instance, click on the toolbar button that shows the HI-TECH “ball and

stick” logo, as shown in the figure below. You will notice that the Project menu has two items: Build and

Rebuild.

An output window

should show with

BUILD SUCCEDDED

The compiler has

produced memory

summary and there

is no message

indicating that the

build failed, so we

have successfully

compiled the project.

If there are errors

they will be printed

in Build tab of this

window. You can

double-click each

error message and MPLAB

IDE will show you the

offending line of code,

where possible. If you do get

errors, check that the

program is as it is written in

this document. BUILD SUCCEED DOES NOT MEAN THAT YOUR PROGRAM IS CORRECT, IT SIMPLY

MEANS THAT THERE ARE NO SYNTAX ERRORS FOUND, SO WATCH OUT FOR ANY LOGICAL

ERRORS YOU MIGHT MAKE.

5

Quick Review of the Basic Rules for Programming in C
1. Comments for only ONE line of code start with 2 slashes: //

// This is a one line comment

Remember to always document your code through the use of functional comments!

2. Comments for more than one line start with /* en end with */

/*

This is a comment.

This is another comment.

*/

3. At the end of each line with some instruction, a semi-colon (;) has to be placed.

a=a+3;

4. Parts of the program that belong together (functions, statements, etc.), are between { and }.

void main(void) //Function

{

//Add code

}

The Basic Structure of a C Program

The ordered structure of a program in C is as follows:

 Libraries

 Global Variables

 Function Prototypes

 Main Function

 Functions

 Adding libraries (the initial few lines of any C program)

Syntax: #include <filename.h>

Libraries such as “htc.h”, “math.h” and “stdlib.h” include many references to built-in variables and

functions to be used in programs, if the header files are not included, the built-in functions and

variables if used will not be defined which will result in build errors.

The htc.h file will be included in all our C programs which use the HI-TECH compiler, other

compilers have different header files, refer to their documentation when needed.

 Declaring “global” variables.

Define and declare the variables to be used throughout the program, this is in contrast to “local”

variables discussed later on.

 Defining prototypes of the functions.

A C program has a main function and possibly other functions as well which might be written below

the main function. If we are to call any of the other functions from inside the main subroutine, the

build will fail and indicate that the function is undefined. This is because the code is compiled line

by line and at the moment the compiler attempts to compile “call function”, it still has not known of

the existence of this function because it is declared later in the code “after main”. One solution is to

place all the functions before the main function. Another preferred method is the use of function

prototype. A prototype of a function ensures that the function can be called anywhere in the

program. It is simply copying only the header of the function, placing it before the main

subroutine and ending it with a semicolon ‘;’

6

 Main function.

This is the function that will be called first when starting your microcontroller. From there, other

functions are called. Every C program must have a main function.

 Functions.

Functions are a grouping of instructions which perform a certain task. They are the unit of

modularity and are very useful to make it easy to repeat tasks. They have input and output

variables.

Syntax: type identifier function name (type identifier identifier1, type identifier identifier2 ….)

{

 //The body of the function

 return identifier //only when return type is not void

}

Type identifier: could be int, long, short, char, void ….. etc

The output variable type precedes the function’s name, input variables follow the function name

and are placed in between brackets, a function can take as many input variables as needed but it

only returns one output variable.

testFunction1 has two input

parametres of type integer (x,y)

but has no output, all processing

is local inside the function and it

returns no values

testFunction2 has one input

parameter of type integer (x), it

returns an output which is the

square of the input number.

Notice, that value returning

functions end with a return

statement, omitting of which will

result in an error

testFunction3 takes no

input or outputs.

void testFunction1(int x, int y)

{

 int k;

 k = x;

 y = 2 + x;

}

int testFunction2 (int x)

{

 return x*x;

}

void testFunction3 (void)

{

 //some code

}

How to call function: Examples

testFunction1(75,99) A = testFunction2(5)

Since this type of functions

returns a value, the value need

be stored in a previously defined

variable. The variable must be

defined as the same return

output type of the function, if the

function returns an integer, A

must be defined as integer, if the

function returns a character, A

need be defined as character …

testFunction()

Note that the brackets are

left empty when no

arguments are passed

7

More on Variables
Variables can be classified into two main types depending on their scope:

Global Variables
These variables can be accessed (i.e. known) by any function comprising the program. They are
implemented by associating memory locations with variable names. They do not get recreated if the
function is recalled. In Example Program 1, (a, b, c, and temp) are GLOBAL VARIABLES
Local Variables
These variables only exist inside the specific function that creates them. They are unknown to other
functions and to the main program. As such, they are normally implemented using a stack. Local
variables cease to exist once the function that created them is completed. They are recreated each time
a function is executed or called. In Example Program 1, (p) is a LOCAL VARIABLE

Variable Types
The following table lists all possible variable types in C, the size they take up in memory and the
range of each.

Type Memory usage Possible values

bit 1 bit 0, 1
char 8 bits -128…127
unsigned char 8 bits 0…255
signed char 8 bits -128…127
int 16 bits -32k7…32k7
unsigned int 16 bits 0…65k5
signed int 16 bits -32k7…32k7
long int 32 bits -2G1…2G1
unsigned long int 32 bits 0…4G3
signed long int 32 bits -2G1…2G1
float 32 bits ± 10^(±38)
double 32 bits ± 10^(±38)

Example Program 1: Typical Program Layout
// ExampleProgram1.c

#include <htc.h> //Always include this library when using HI-TECH C compiler
//Declaring global variables

int a, b, c;
char temp;

//Defining prototypes
int calc (int p);

//Main function
void main(void)
{

a=calc(3); //write main body code
}

//Functions
int calc (int p)
{

p=p+1; //write function body code
return p;

}

8

Default Input Is Decimal

C Operators

 Relational and bit operators

> Greater than

>= Greater than or similar to
< Less than

<= Less than or similar to
== Equal to
!= Not equal to

 Arithmetic operators

x--; This is the same as x = x – 1;

x++; This is the same as x = x + 1;

~ Bitwise NOT
& Bitwise AND
| Bitwise OR
^ Bitwise XOR

<< Shift to left
>> Shift to right

+ Addition
- Subtraction
* Multiplication
/ Division

% Modulus (remainder after division)

Example Program 2:

#include <htc.h>
char Ch;
unsigned int X;
signed int Y;
int Z, a, b, c; // Same as "signed int"
unsigned char Ch1;
bit S, T;

void main (void)
{

Ch = 'a';
X = -5;
Y = 0x25;
Z =-5;
Ch1='b';
T = 0;
S = 81; //S=1 When assigning a larger integral type to a bit variable,

//only the Least Significant bit is used.
 a = 15;

b = 0b00001111;
c = 0x0F;
// a, b, c will all have the same value which is 15

}

9

Operators Precedence Chart
Operator precedence describes the order in which C reads expressions. For example, the expression

a=4+b*2 contains two operations, an addition and a multiplication. Does the HI TECH compiler evaluate

4+b first, then multiply the result by 2, or does it evaluate b*2 first, then add 4 to the result? The operator

precedence chart contains the answers. Operators higher in the chart have a higher precedence, meaning

that the HI TECH compiler evaluates them first. Operators on the same line in the chart have the same

precedence, and the "Associativity" column on the right gives their evaluation order.

Operator Precedence Chart

Operator Type Operator Associativity

Primary Expression Operators () left-to-right

Binary Operators

* / %

left-to-right

+ -
>> <<

< > <= >=

== !=
&

^
|

Example Program 3: Fibonacci series: 0, 1, 1, 2, 3, 5

#include <htc.h> // Library
unsigned int Fib (unsigned int Num1, unsigned int Num2); // Prototype
unsigned int F1, F2, F3, F4, F5, F6; // Global Variables

void main (void) // Main function
{

F1 = 0;
F2 = 1;
F3 = Fib (F1, F2);
F4 = Fib (F2, F3);
F5 = Fib (F3, F4);
F6 = Fib (F4, F5);

}
 unsigned int Fib (unsigned int Num1, unsigned int Num2) //Function
{

 return Num1 + Num2;
}

10

Preparing for Simulation

1. Start a new MPLAB session, add the file ExampleProgram3.c to your project

2. Build the project

3. Select Debugger  Select Tool MPLAB SIM

4. Go to View Menu  Watch (From the drop out menu choose the variables watch F1 through F6 we

want to inspect during simulation and click ADD Symbol for each one)

From the Debugger Menu  choose Select Tool  then MPLAB SIM
After the following buttons appears in the toolbar:

5. Press the “Step into” button one at a time and check the Watch window each time an
instruction executes; keep pressing “Step into” until you all the six terms of the series are
generated.

6. Reset the simulation, do step 5 above but this time use “Step Over”, note the difference
7. Reset the simulation, do step 5 above, this time place a break point at the last instruction in

main, press run. Inspect the variables in watch window.

Notes about simulating a code written in C in MPLAB
Stepping into codes written in C is not as direct as one would imagine, different compilers translate the

C code into assembly differently, a single line of code might be translated into multiple assembly lines,

for example a simple assignment statement “X = 5” where X has been defined as integer will be

translated into four assembly instructions.

Movlw 05

Movwf 0x70 //GPR address 0x70 chosen by compiler

Movlw 00

Movwf 0x71

Since X is an integer which reserves 2 bytes in memory (16 bits as specified in the table in page 7), it

need be saved as 0x0005, so two instructions are needed to load the first byte into location 0x70 and

another two to move the rest of the number into location 0x71.

If a simple one statement instruction was assembled like this, imagine how would complex statements

be translated like for loops and if statements. Moreover, some compilers are more efficient than others,

which give you optimized shorter assembly codes which might not be easy to understand.

Moreover, function placement spans through multiple pages in program memory, the code might not be

placed in consecutive order into memory by the compiler; further overhead instructions to switch

between pages are common.

In addition, the use of built-in library functions will further complicate stepping through assembly codes

line by line as these functions are often provided as a black box for the developer to use with no interest

in their details.

For this, it might be difficult for the inexperienced to understand the assembly code generated by

compilers, and stepping into assembly code one instruction at a time might be a headache. It is often

advised to place breakpoints at points of interest and run the program till it halts at the required

breakpoints and analyze the outputs in the watch window.

11

Control and Repetition Statements
 IF...ELSE statements

 WHILE loop

 FOR loop

while (expression)

{

 statement 1;

 statement 2;

 .

 .

 statement n;

}

if (expression1)

{

 statement 1;

 .

 .

 statement n;

}

else

{

 statement 1;

 .

 .

 statement n;

}

for (expr1; expr2; expr3)

{

 statement 1;

 statement 2;

 .

 .

 statement n;

}

Example Code 5:

if (a==0) //If a is equal to 0
{

b++; // increase b and c by 1
c++;

}
else
{

b--; //decrease b and c by 1
c--;

}

Example Code 6:

while (a>=1) && (a <=10) //As long as 1<=a <= 10
{

b = b + 3;
c = a%b;

}

Example Code 7:

for (i = 0 ; i < 100 ; i++) //loop 100 times
{

B = B + i + A%i;
}

12

C for PIC
The preceding discussion introduced the C language in a broad concept. Now, we will draw an example of

how to use C with the PIC microcontroller. Actually, it is fairly simple where besides user defined variables,

the PIC registers are also used in the context of programs.

The microcontroller is completely controlled by registers. All registers used in MPLAB HI-TECH have
exact the same name as the name stated in the datasheet. Registers can be set in different ways,
following are few examples:

TRISB = 0b00000000; //TRISB is output
PORTC = 255; //All pins of PORTC are made high
PORTD = 0xFF; //All pins of PORTD are made high
PORTB = 170; //Pin B7 on, B6 off, B5 on, B4 off, etc.
TRISB = 0b11110010; //Pin RB7, RB6, RB5, RB4 and RB1 are input, other bits are outputs.
OPTION=0xD4 //PSA assigned to TMR0, Prescalar = 32, TMR0 clock source is the internal instruction cycle

//clock, External interrupt is on the rising “refer to datasheet”
.

To set or reset one single bit in a register (one of the 8 bits), the pin name is used and, the names of the
bits are also as specified and used in the datasheet.
Some examples:

RB0 = 1 //Pin B0 on
RB7 = 0 //Pin B7 off

Example Program 8: Periodically switch a LED connected to RD0 on and off

#include <htc.h>

// if the whole function is placed before the main function, there is no need for a prototype

void Wait()

{

 unsigned char i;

 for(i=0; i<100; i++)

 _delay(60000); //built in function .. more info next page

}

void main()

{

 //Initialize PORTD -> RD0 as Output

TRISD=0b11111110;

 //Now loop forever blinking the LED.

while(1)

{

 RD0 = 1; //LED on

 Wait();

 RD0 = 0; //LED off

 Wait();

}

}

13

To simulate the above example code, you can either select PORTD from the ADD SFR drop down menu
or choose _PORTDbits from the ADD SYMBOL drop list, click on the + sign to expand and see the
individual bits.

Place your break points on both Wait() instructions and run the code.

BUILT IN LIBRARY FUNCTIONS
The C standard libraries contain a standard collection of functions, such as string, math and
input/output routines. The declaration or definition for a function is found in the htc.h and other
libraries files which are to be included whenever necessary. Some of these functions are listed below,
the syntax of each and a brief description follows.

Delay functions

_DELAY

Synopsis
#include <htc.h>
void _delay(unsigned long cycles);

Description
This is an inline function that is expanded by the
code generator. The sequence will consist of code
that delays for the number of cycles that is
specified as argument. The argument must be a
literal constant.
An error will result if the delay period requested
is too large. For very large delays, call this
function multiple times.

//Example

#include <htc.h>

int A;

void main (void)

{

A = A | 0x7f;

_delay(10); // delay for 10 cycles

A = A & 0x85;

 }

__DELAY_MS, __DELAY_US

Synopsis
__delay_ms(x) // request a delay in milliseconds
__delay_us(x) // request a delay in microseconds

Description
As it is often more convenient request a delay in
time-based terms rather than in cycle counts, the
macros __delay_ms(x) and __delay_us(x) are
provided. These macros simply wrap around
_delay(n) and convert the time based request into
instruction cycles based on the system frequency.
These macros require the prior definition of
preprocessor symbol _XTAL_FREQ. This symbol
should be defined as the oscillator frequency (in
Hertz) used by the system.

//Example

#include <htc.h>

int A;

#define _XTAL_FREQ 4000000

void main (void)

{

A = A | 0x7f;

 __delay_ms(10); // delay for 10 ms

A = A & 0x85;

}

14

Arithmetic functions
In addition to the htc.c library, other libraries such as Standard Library <stdlib.h> or C Math
Library <math.h> need be included in the project for making use of many useful built-in functions.
Make sure you include the appropriate header files for each library before making use of its
functions or else build errors will be present.

ABS, POW, LOG, LOG10, RAND, MOD, DIV, CEIL, FLOOR, NOP, ROUND, SQRT are required.. refer to the
datasheet for the documentation of the others

ABS

Synopsis
#include <stdlib.h>
int abs (int j)

Description
The abs() function returns the absolute value of
the passed argument j.

POW

Synopsis
#include <math.h>
double pow (double f, double p)

Description
The pow() function raises its first argument, f, to
the power p.

LOG, LOG10

Synopsis
#include <math.h>
double log (double f)
double log10 (double f)

Description
The log() function returns the natural logarithm
of f. The function log10() returns the
logarithm to base 10 of f.

RAND

Synopsis
#include <stdlib.h>
int rand (void)

Description
The rand() function is a pseudo-random number
generator. It returns an integer in the range 0 to
32767, which changes in a pseudo-random
fashion on each call.

15

Trigonometric functions
SIN, COS, TAN, COS, ASIN, ATAN …… refer to the data sheet for the others

 define directive

You can use the #define directive to give a meaningful name to a constant in your program.

Example:

#define COUNT 1000

 SIN

Synopsis
#include <math.h>
double sin (double f)

Description
This function returns the sine function of its
argument.it is very important to realize that C
uses radians, not degrees to perform these
calculations! If the angle is in degrees you must
first convert it to radians.

 COS

Synopsis
#include <math.h>
double cos (double f)

Description
This function yields the cosine of its argument,
which is an angle in radians. The cosine is
calculated by expansion of a polynomial series
approximation.

// Example:
#include <htc.h>
#include <math.h>
#include <stdio.h>
#define C 3.141592/180.0
double X,Y;
void main (void)
{
double i;
X=0;
Y=0;
for(i = 0 ; i <= 180.0 ; i += 10)
{X= sin(i*C);
Y= cos(i*C);
}
}

#define identifier constant

