The University of Jordan College of Engineering & Technology Department of Computer Engineering

Spring Term - A.Y. 2016-2017

Course: Embedded Systems Lab – 0907334 (1 Cr. – Core Course)

Catalog Data: Introduction to embedded systems design tools and hardware programmers.

Experiments using both simulation and practical implementation of the basic building blocks of a microcontroller including timers, counters, I/O techniques and requirements, A/D conversion, serial communication. Experiments to explore the system design process using hardware-software co-design

process. Design project.

Co-requisites by

Course:

Embedded Systems (0907333)

Prerequisites by Topic: Good background in electronics, circuits, digital logic, and assembly

programming.

Textbook: The lab manual which consists of a set of experiments is posted on the lab

website.

• Designing Embedded Systems with PIC Microcontrollers (principles and

applications), 2nd Ed. By: Tim Wilmshurst, Newnes, 2007.

• An Introduction to the Design of Small-Scale Embedded Systems, 1st Ed.

By: Tim Wilmshurst Palgrave, 2001.

• Microchip Website: www.microchip.com

Course Website: http://embedded-ju.ucoz.com/

Schedule & Duration: 15 Weeks, 12 labs, 3 hr. each (including exams)

Student Material: Text book, lab handouts, some instructor keynotes, calculator

and access to a personal computer and internet.

College Facilities: Lab with whiteboard, personal computers, PIC development boards, PIC

programmers, oscilliscopes and server.

Course Objectives: The objectives of this lab are:

1. Introduce students to embedded systems design tools and hardware

programmers.

2. Develop students skills in both simulation and practical implementation of the basic building blocks of a microcontroller including timers, counters, I/O techniques and requirements, A/D

conversion, serial communication.

Improve students communication skills and ability to formulate and slove engineering problems through the complete designing of a medium embedded system with detailed documentation and oral

presentation.

Course **Outcomes** Relation to ABET Program **Outcomes:**

and Upon successful completion of this course, a student should be able to:

- 1. Use a set of tools for embedded systems simulation, programming and debugging. [b,k]
- Implement several embedded systems with particular focus on the interaction between multiple devices.[b]
- Take part of a multidisciplinary team to design products using microcontrollers and various analog and digital ICs. [b,c,d]
- 4. Read the datasheet of any embedded system and understand how it works. [b]
- 5. Develop existing embedded systems by formulating the system design problem including the design constraints, creating a design that satisfies the constraints, implementing the design in hardware and software, and measuring performance against the design constraints. [b.c.d.e]
- Communicate effectively with lab instructor and labmates through clear documentation and presentation of the designed project. [g]

Lab Schedule:

Date (Week Start)	Event
29/1/2017	Lab Preparations
5/2/2017	Introduction to MPLAB
12/2/2017	MPLAB and Instruction Set Analysis 1
19/2/2017	Instruction Set Analysis 2 & Modular Programming Techniques
26/2/2017	Basic Embedded System Analysis and Design + Introducing Protus
5/3/2017	Hardware excercises + Quiz + Project Announcement
12/3/2017	LCD
19/3/2017	Timers
26/3/2017	Midterm Exam
2/4/2017	USART
9/4/2017	A/D
16/4/2017	Using HI-TECH C compiler in MPLAB
23/4/2017	Project Submission & Discussion
Last Week of Study	Final Exam

Attendance:

Lab attendance will be taken and the university's polices will be enforced in

this regard.

Assessments: Quizzes, exams, project and in-lab assessment

10% Pre-labs & Labsheets **Grading policy:** 10% Quiz

Midterm Exam 20% Project 20% Final Exam 40%

Dr.Waleed Dweik Instructors: w.dweik@ju.edu.jo

s.sweadan@ju.edu.jo Eng. Saadeh Sweadan Eng.Ola Al-Jaloudy o.jaloudy@ju.edu.jo r.aljamal@ju.edu.jo Eng. Rawan Al-Jamal

Lab Time and Location:

Section 1: Sunday; 1:00 pm— 4:00 pm, Embedded Systems Lab Section 2: Monday; 12:30 pm— 3:30 pm, Embedded Systems Lab Section 3: Tuesday; 1:00 pm— 4:00 pm, Embedded Systems Lab Section 4: Wednesday; 12:30 pm— 3:30 pm, Embedded Systems Lab Section 5: Thursday; 1:00 pm— 4:00 pm, Embedded Systems Lab

Program Outcomes (PO)

а	An ability to apply knowledge of mathematics, science, and engineering
b	An ability to design and conduct experiment as well as to analyze and interpret data.
С	An ability to design a system, component, or process to meet desired needs, within realistic
	constraints such as economic, environmental, social, political, ethical, health and safety,
	manufacturability, and sustainability.
d	An ability to function on multidisplainary team
е	An ability to identify, formulate, and solve engineering problems
f	An understanding of professional and ethical responsibility.
g	An ability to communicate effectively
h	The broad education necessary to understand the impact of engineering solutions in a gloabal,
	economic, environmental, and societal context
i	A recognition of the need for, and an ability to engage in life-long learning
j	Knowledge of contemporary issues
k	An ability to use the techniques, skills, and modern engineering tools necessary for
	engineering practice

Last Updated:

September 17, 2016