PIC book

P1C microcontrollers for beginnerstoo!

Author: Nebojsa Matic

E
1

Paperback - 252 pages (May 15, 2000)

m

Dimensions (in inches): 0.62 x 9.13 x 7.28

l!

i

PIC microcontrollers; low-cost computers-in-a-chip; allows

Frr s electronics designers and hobbyists add intelligence and
P functions that mimic big computers for almost any electronic
... The = product or project.
P I c The purpose of this book is not to make a microcontroller expert
microcontroller out of you, but to make you equal to those who had someone to
S R go to for their answers.

In this book you can find:

Practical connection samples for

Relays, Optocouplers, LCD's, Keys, Digits, A to D Converters, Serial communication etc.
Introduction to microcontrollers

Learn what they are, how they work, and how they can be helpful in your work.
Assembler language programming

How to write your first program, use of macros, addressing modes....

Instruction Set

Description, sample and purpose for using each instruction........

MPLAB program package

How to install it, how to start the first program, following the program step by step in the simulator....

Contents

CHAPTER 1 INTRODUCTION TO MICROCONTROLLERS

Introduction

History
Microcontrollers versus microprocessors

1.1 Memory unit

1.2 Central processing unit
1.3 Buses

1.4 Input-output unit

1.5 Serial communication
1.6 Timer unit

1.7 Watchdog

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (1 of 5) [4/2/2003 16:17:25]

PIC book

1.8 Analog to digital converter
1.9 Program

CHAPTER 11 MICROCONTROLLER PIC16F84

Introduction

CISC, RISC
Applications
Clock/instruction cycle
Pipelining

Pin description

2.1 Clock generator - oscillator
2.2 Reset

2.3 Central processing unit
2.4 Ports

2.5 Memory organization

2.6 Interrupts

2.7 Free timer TMRO

2.8 EEPROM Data memory

CHAPTER 111 INSTRUCTION SET

Introduction

Instruction set in PIC16Cxx microcontroller family
Data Transfer

Arithmetic and logic

Bit operations

Directing the program flow

Instruction execution period

Word list

CHAPTER 1V ASSEMBLY LANGUAGE PROGRAMMING

Introduction

Sample of a written program

Control directives

. 4.1 define

« 4.2 include
« 4.3 constant
« 4.4 variable
« 4.5 set

« 4.6 equ

http://imww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (2 of 5) [4/2/2003 16:17:25]

PIC book

.« 4.7 org
« 4.8 end

Conditional instructions

. 49if

« 4.10 else
« 4.11 endif
« 4.12 while
« 4.13 endw
o« 4.14 ifdef
o« 4.15 ifndef

Data directives

o 4.16 cblock
« 4.17 endc
.« 4.18 db

« 4.19 de

.« 4.20 dt

Configurating a directive

« 4.21 CONFIG
« 4.22 Processor

Assembler arithmetic operators
Files created as a result of program translation
Macros

CHAPTER V MPLAB

Introduction

5.1 Installing the MPLAB program package
5.2 Introduction to MPLAB

5.3 Choosing the development mode

5.4 Designing a project

5.5 Designing new assembler file

5.6 Writing a program

5.7 MPSIM simulator

5.8 Toolbar

CHAPTER VI THE SAMPLES

Introduction

6.1 The microcontroller power supply
6.2 Macros used in programs

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (3 of 5) [4/2/2003 16:17:25]

PIC book

. Macros WAIT, WAITX
. Macro PRINT

6.3 Samples

« Light Emitting Diodes
. Keyboard

. Optocoupler
o Optocouplering the input lines

o Optocouplering the output lines
. Relays
. Generating a sound
. Shift registers
o Input shift reqgister
o Qutput shift register
. 7-segment Displays (multiplexing)
. LCD display
. 12-bit AD converter
« Serial communication

APPENDIX A INSTRUCTION SET

APPENDIX B NUMERIC SYSTEMS

Introduction

B.1 Decimal nhumeric system
B.2 Binary humeric system
B.3 Hexadecimal numeric system

APPENDIX C GLOSSARY

http://imww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (4 of 5) [4/2/2003 16:17:25]

PIC book

Subject :

Cooment about book PIC microcontrollers

Name :

State :

USA

E-mail :

Your message:

Submit

Reset

Send us a comment about a
book

©Copyright 2001. mikroElektronika.All Rights Reserved. For any comments contact webmaster.

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/0_Uvod.htm (5 of 5) [4/2/2003 16:17:25]

mailto:office@mikroelektronika.co.yu

Chapter 1 - Introduction to Microprocessors

Table of contents Chapter overview Next page

CHAPTER 1

Introduction to Microcontrollers

Introduction

History
Microcontrollers versus microprocessors

1.1 Memory unit

1.2 Central processing unit
1.3 Buses

1.4 Input-output unit

1.5 Serial communication

1.6 Timer unit

1.7 Watchdog

1.8 Analog to digital converter

1.9 Program

Circumstances that we find ourselves in today in the field of microcontrollers had their
beginnings in the development of technology of integrated circuits. This development has made
it possible to store hundreds of thousands of transistors into one chip. That was a prerequisite
for production of microprocessors , and the first computers were made by adding external
peripherals such as memory, input-output lines, timers and other. Further increasing of the
volume of the package resulted in creation of integrated circuits. These integrated circuits
contained both processor and peripherals. That is how the first chip containing a microcomputer
, or what would later be known as a microcontroller came about.

It was year 1969, and a team of Japanese engineers from the BUSICOM company arrived to
United States with a request that a few integrated circuits for calculators be made using their
projects. The proposition was set to INTEL, and Marcian Hoff was responsible for the project.
Since he was the one who has had experience in working with a computer (PC) PDP8, it occured
to him to suggest a fundamentally different solution instead of the suggested construction. This
solution presumed that the function of the integrated circuit is determined by a program stored
in it. That meant that configuration would be more simple, but that it would require far more
memory than the project that was proposed by Japanese engineers would require. After a
while, though Japanese engineers tried finding an easier solution, Marcian's idea won, and the
first microprocessor was born. In transforming an idea into a ready made product , Frederico
Faggin was a major help to INTEL. He transferred to INTEL, and in only 9 months had
succeeded in making a product from its first conception. INTEL obtained the rights to sell this
integral block in 1971. First, they bought the license from the BUSICOM company who had no

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (1 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

idea what treasure they had. During that year, there appeared on the market a microprocessor
called 4004. That was the first 4-bit microprocessor with the speed of 6 000 operations per
second. Not long after that, American company CTC requested from INTEL and Texas
Instruments to make an 8-bit microprocessor for use in terminals. Even though CTC gave up
this idea in the end, Intel and Texas Instruments kept working on the microprocessor and in
April of 1972, first 8-bit microprocessor appeard on the market under a name 8008. It was able
to address 16Kb of memory, and it had 45 instructions and the speed of 300 000 operations per
second. That microprocessor was the predecessor of all today's microprocessors. Intel kept
their developments up in April of 1974, and they put on the market the 8-bit processor under a
name 8080 which was able to address 64Kb of memory, and which had 75 instructions, and the
price began at $360.

In another American company Motorola, they realized quickly what was happening, so they put
out on the market an 8-bit microprocessor 6800. Chief constructor was Chuck Peddle, and
along with the processor itself, Motorola was the first company to make other peripherals such
as 6820 and 6850. At that time many companies recognized greater importance of
microprocessors and began their own developments. Chuck Peddle leaved Motorola to join MOS
Technology and kept working intensively on developing microprocessors.

At the WESCON exhibit in United States in 1975, a critical event took place in the history of
microprocessors. The MOS Technology announced it was marketing microprocessors 6501 and
6502 at $25 each, which buyers could purchase immediately. This was so sensational that
many thought it was some kind of a scam, considering that competitors were selling 8080 and
6800 at $179 each. As an answer to its competitor, both Intel and Motorola lowered their prices
on the first day of the exhibit down to $69.95 per microprocessor. Motorola quickly brought suit
against MOS Technology and Chuck Peddle for copying the protected 6800. MOS Technology
stopped making 6501, but kept producing 6502. The 6502 was a 8-bit microprocessor with 56
instructions and a capability of directly addressing 64Kb of memory. Due to low cost , 6502
becomes very popular, so it was installed into computers such as: KIM-1, Apple I, Apple 11,
Atari, Comodore, Acorn, Oric, Galeb, Orao, Ultra, and many others. Soon appeared several
makers of 6502 (Rockwell, Sznertek, GTE, NCR, Ricoh, and Comodore takes over MOS
Technology) which was at the time of its prosperity sold at a rate of 15 million processors a
year!

Others were not giving up though. Frederico Faggin leaves Intel, and starts his own Zilog Inc.
In 1976 Zilog announced the Z80. During the making of this microprocessor, Faggin made a
pivotal decision. Knowing that a great deal of programs have been already developed for 8080,
Faggin realized that many would stay faithful to that microprocessor because of great
expenditure which redoing of all of the programs would result in. Thus he decided that a new
processor had to be compatible with 8080, or that it had to be capable of performing all of the
programs which had already been written for 8080. Beside these characteristics, many new
ones have been added, so that Z80 was a very powerful microprocessor in its time. It was able
to address directly 64 Kb of memory, it had 176 instructions, a large number of registers, a
built in option for refreshing the dynamic RAM memory, single-supply, greater speed of work
etc. Z80 was a great success and everybody converted from 8080 to Z80. It could be said that
Z80 was without a doubt commercially most successful 8-bit microprocessor of that time.
Besides Zilog, other new manufacturers like Mostek, NEC, SHARP, and SGS also appeared. Z80
was the heart of many computers like Spectrum, Partner, TRS703, Z-3 .

In 1976, Intel came up with an improved version of 8-bit microprocessor named 8085.
However, Z80 was so much better that Intel soon lost the battle. Altough a few more
processors appeared on the market (6809, 2650, SC/MP etc.), everything was actually already
decided. There weren't any more great improvements to make manufacturers convert to
something new, so 6502 and Z80 along with 6800 remained as main representatives of the 8-
bit microprocessors of that time.

Microcontroller differs from a microprocessor in many ways. First and the most important is its
functionality. In order for a microprocessor to be used, other components such as memory, or

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (2 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

components for receiving and sending data must be added to it. In short that means that
microprocessor is the very heart of the computer. On the other hand, microcontroller is
designed to be all of that in one. No other external components are needed for its application
because all necessary peripherals are already built into it. Thus, we save the time and space
needed to construct devices.

Memory is part of the microcontroller whose function is to store data.

The easiest way to explain it is to describe it as one big closet with lots of drawers. If we
suppose that we marked the drawers in such a way that they can not be confused, any of their
contents will then be easily accessible. It is enough to know the designation of the drawer and
so its contents will be known to us for sure.

mem location 0

mem location 1

Example of simplified model of a
merrm location 2 memaory unit. For a specific input we
get & carresponding output. Line AW
determines wheather we are reading
fram ar writing to memoary

I .
Addresses . Data

T

mem location 14

mem location 14

7 ¥

Memory components are exactly like that. For a certain input we get the contents of a certain
addressed memory location and that's all. Two new concepts are brought to us: addressing and
memory location. Memory consists of all memory locations, and addressing is nothing but
selecting one of them. This means that we need to select the desired memory location on one
hand, and on the other hand we need to wait for the contents of that location. Beside reading
from a memory location, memory must also provide for writing onto it. This is done by
supplying an additional line called control line. We will designhate this line as R/W (read/write).
Control line is used in the following way: if r/w=1, reading is done, and if opposite is true then
writing is done on the memory location. Memory is the first element, and we need a few
operation of our microcontroller .

Let add 3 more memory locations to a specific block that will have a built in capability to
multiply, divide, subtract, and move its contents from one memory location onto another. The
part we just added in is called "central processing unit" (CPU). Its memory locations are called
registers.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (3 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

register 1
reqgister 2
J Example of simplified central processing
register 3 unit with three registers
Addresses
— Data
Control lines CPU

Registers are therefore memory locations whose role is to help with performing various
mathematical operations or any other operations with data wherever data can be found. Look at
the current situation. We have two independent entities (memory and CPU) which are
interconnected, and thus any exchange of data is hindered, as well as its functionality. If, for
example, we wish to add the contents of two memory locations and return the result again back
to memory, we would need a connection between memory and CPU. Simply stated, we must
have some "way" through data goes from one block to another.

That "way" is called "bus". Physically, it represents a group of 8, 16, or more wires

There are two types of buses: address and data bus. The first one consists of as many lines as
the amount of memory we wish to address, and the other one is as wide as data, in our case 8
bits or the connection line. First one serves to transmit address from CPU memory, and the
second to connect all blocks inside the microcontroller.

mem location U Connecting memory and central unit

using busses in order to gain on
functionality

mem location 1

mem location 2

reqister 1

MEMORY 4 Data N register 2
' B L register 3
1
Addresses
mem.location 14 | [|
Control lines
mem location 15 | T4 ViR CPU

As far as functionality, the situation has improved, but a new problem has also appeared: we
have a unit that's capable of working by itself, but which does not have any contact with the
outside world, or with us! In order to remove this deficiency, let's add a block which contains
several memory locations whose one end is connected to the data bus, and the other has
connection with the output lines on the microcontroller which can be seen as pins on the
electronic component.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (4 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

Those locations we've just added are called "ports". There are several types of ports : input,
output or bidiectional ports. When working with ports, first of all it is necessary to choose which
port we need to work with, and then to send data to, or take it from the port.

Input —
H i Data
register — Example of a simplified
input-output unit that provides
— cammunication with external
DUt.DUt Data world
reqister —
Diata]
IO unit

When working with it the port acts like a memory location. Something is simply being written
into or read from it, and it could be noticed on the pins of the microcontroller.

Beside stated above we've added to the already existing unit the possibility of communication
with an outside world. However, this way of communicating has its drawbacks. One of the basic
drawbacks is the number of lines which need to be used in order to transfer data. What if it is
being transferred to a distance of several kilometers? The number of lines times number of
kilometers doesn't promise the economy of the project. It leaves us having to reduce the
number of lines in such a way that we don't lessen its functionality. Suppose we are working
with three lines only, and that one line is used for sending data, other for receiving, and the
third one is used as a reference line for both the input and the output side. In order for this to
work, we need to set the rules of exchange of data. These rules are called protocol. Protocol is
therefore defined in advance so there wouldn't be any misunderstanding between the sides that
are communicating with each other. For example, if one man is speaking in French, and the
other in English, it is highly unlikely that they will quickly and effectively understand each other.
Let's suppose we have the following protocol. The logical unit "1" is set up on the transmitting
line until transfer begins. Once the transfer starts, we lower the transmission line to logical "0"
for a period of time (which we will designate as T), so the receiving side will know that it is
receiving data, and so it will activate its mechanism for reception. Let's go back now to the
transmission side and start putting logic zeros and ones onto the transmitter line in the order
from a bit of the lowest value to a bit of the highest value. Let each bit stay on line for a time
period which is equal to T, and in the end, or after the 8th bit, let us bring the logical unit "1"
back on the line which will mark the end of the transmission of one data. The protocol we've
just described is called in professional literature NRZ (Non-Return to Zero).

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (5 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

Fecelyver a—t—— Feceiving line
transmitter | 1w Transmitting line
register .
—1— Reference line

Serial unit used to send
data, but only by three
Data Serial lines

unit

As we have separate lines for receiving and sending, it is possible to receive and send data
(info.) at the same time. So called full-duplex mode block which enables this way of
communication is called a serial communication block. Unlike the parallel transmission, data
moves here bit by bit, or in a series of bits what defines the term serial communication comes
from. After the reception of data we need to read it from the receiving location and store it in
memory as opposed to sending where the process is reversed. Data goes from memory through
the bus to the sending location, and then to the receiving unit according to the protocol.

Since we have the serial communication explained, we can receive, send and process data.

Free-run —— Signal
counter
Timer unit Timer unit generates signals in
regular time intervals

However, in order to utilize it in industry we need a few additionally blocks. One of those is the
timer block which is significant to us because it can give us information about time, duration,
protocol etc. The basic unit of the timer is a free-run counter which is in fact a register whose
numeric value increments by one in even intervals, so that by taking its value during periods T1
and T2 and on the basis of their difference we can determine how much time has elapsed. This
is a very important part of the microcontroller whose understnding requires most of our time.

One more thing is requiring our attention is a flawless functioning of the microcontroller
during its run-time. Suppose that as a result of some interference (which often does occur in
industry) our microcontroller stops executing the program, or worse, it starts working

incorrectly.
Free-run
counter
reset
- Watchdog

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (6 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

Of course, when this happens with a computer, we simply reset it and it will keep working.
However, there is no reset button we can push on the microcontroller and thus solve our
problem. To overcome this obstacle, we need to introduce one more block called watchdog. This
block is in fact another free-run counter where our program needs to write a zero in every time
it executes correctly. In case that program gets "stuck", zero will not be written in, and counter
alone will reset the microcontroller upon achieving its maximum value. This will result in
executing the program again, and correctly this time around. That is an important element of
every program to be reliable without man's supervision.

As the peripheral signals usually are substantially different from the ones that microcontroller
can understand (zero and one), they have to be converted into a pattern which can be
comprehended by a microcontroller. This task is performed by a block for analog to digital
conversion or by an ADC. This block is responsible for converting an information about some
analog value to a binary number and for follow it through to a CPU block so that CPU block can
further process it.

ADC register . Block for converting an
Analog input analogue to a digital form

Data

— AD converter

Finnaly, the microcontroller is now completed, and all we need to do now is to assemble it into
an electronic component where it will access inner blocks through the outside pins. The picture
below shows what a microcontroller looks like inside.

Physical configuration of the interior of a microcontroller

Thin lines which lead from the center towards the sides of the microcontroller represent wires
connecting inner blocks with the pins on the housing of the microcontroller so called bonding
lines. Chart on the following page represents the center section of a microcontroller.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (7 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

nput 1= | peceiving register AD input
Output — ™ | Transmitting —
Reference —— recister AD
g converter
|
Input |
Serial N~ register Data
unit Cutput _
reqister _Data
mem location 0 o
mem location 1 E — 1 WO unit
mem.location 2
: reqister 1
MEMORIJA 1 A reqister 2
' } 1] register 3
Addresses
location 14 | [
e e fun - IR Control
mem.location 15 '., lines CPU
Free-trun ' Independent
courter . counter
Tim_er Watchdog
unit timer

Microcontroller outline with its basic elements and internal connections

For a real application, a microcontroller alone is not enough. Beside a microcontroller, we need
a program that would be executed, and a few more elements which make up a interface logic
towards the elements of regulation (which will be discussed in later chapters).

Program writing is a special field of work with microcontrollers and is called "programming". Try
to write a small program in a language that we will make up ourselves first and then would be
understood by anyone.

START

REGISTER1=MEMORY LOCATION_A
REGISTER2=MEMORY LOCATION_B
PORTA=REGISTER1 + REGISTER2

END

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (8 of 9) [4/2/2003 16:17:33]

Chapter 1 - Introduction to Microprocessors

The program adds the contents of two memory locations, and views their sum on port A. The
first line of the program stands for moving the contents of memory location "A" into one of the
registers of central processing unit. As we need the other data as well, we will also move it into
the other register of the central processing unit. The next instruction instructs the central
processing unit to add the contents of those two registers and send a result to port A, so that
sum of that addition would be visible to the outside world. For a more complex problem,
program that works on its solution will be bigger.

Programming can be done in several languages such as Assembler, C and Basic which are most
commonly used languages. Assembler belongs to lower level languages that are programmed
slowly, but take up the least amount of space in memory and gives the best results where the
speed of program execution is concerned. As it is the most commonly used language in
programming microcontrollers it will be discussed in a later chapter. Programs in C language
are easier to be written, easier to be understood, but are slower in executing from assembler
programs. Basic is the easiest one to learn, and its instructions are nearest a man's way of
reasoning, but like C programming language it is also slower than assembler. In any case,
before you make up your mind about one of these languages you need to consider carefully the
demands for execution speed, for the size of memory and for the amount of time available for
its assembly.

After the program is written, we would install the microcontroller into a device and run it. In
order to do this we need to add a few more external components necessary for its work. First
we must give life to a microcontroller by connecting it to a power supply (power needed for
operation of all electronic instruments) and oscillator whose role is similar to the role that heart
plays in a human body. Based on its clocks microcontroller executes instructions of a program.
As it receives supply microcontroller will perform a small check up on itself, look up the
beginning of the program and start executing it. How the device will work depends on many
parameters, the most important of which is the skillfulness of the developer of hardware, and
on programmer's expertise in getting the maximum out of the device with his program.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/1_Poglavlje.htm (9 of 9) [4/2/2003 16:17:33]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

CHAPTER 2
Microcontroller PIC16F84

Introduction

CISC, RISC

Applications
Clock/instruction cycle
Pipelining

Pin description

2.1 Clock generator - oscillator
2.2 Reset

2.3 Central processing unit
2.4 Ports

2.5 Memory organization

2.6 Interrupts

2.7 Free timer TMRO

2.8 EEPROM Data memory

PIC16F84 belongs to a class of 8-bit microcontrollers of RISC architecture. Its general structure
is shown on the following map representing basic blocks.

Program memory (FLASH)- for storing a written program.
Since memory made in FLASH technology can be programmed and cleared more than once, it
makes this microcontroller suitable for device development.

EEPROM - data memory that needs to be saved when there is no supply.

It is usually used for storing important data that must not be lost if power supply suddenly stops.
For instance, one such data is an assigned temperature in temperature regulators. If during a loss
of power supply this data was lost, we would have to make the adjustment once again upon
return of supply. Thus our device looses on self-reliance.

RAM - data memory used by a program during its execution.

In RAM are stored all inter-results or temporary data during run-time.

PORTA and PORTB are physical connections between the microcontroller and the outside world.
Port A has five, and port B eight pins.

FREE-RUN TIMER is an 8-bit register inside a microcontroller that works independently of the
program. On every fourth clock of the oscillator it increments its value until it reaches the
maximum (255), and then it starts counting over again from zero. As we know the exact timing
between each two increments of the timer contents, timer can be used for measuring time which
is very useful with some devices.

CENTRAL PROCESSING UNIT has a role of connective element between other blocks in the

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (1 of 5) [4/2/2003 16:17:37]

Chapter 2 - Microcontroller PIC16F84

microcontroller. It coordinates the work of other blocks and executes the user program.

Free-run
counter
Diata
MEemary
R ",
Data Program
MEMmOry . CPLU - MEmary
EEPF.OM FLASH
FORTA FORETEB
FICT16F 84 microcontroller outline
Harvard von-Neumann
1w}
. g z
['B a“'
B2 A CPU e E CPU w 52
1]
T G 14 E 5 E T
o o
& a

Harvard ws_von Meuman Elock Architectures

It has already been said that PIC16F84 has a RISC architecture. This term is often found in
computer literature, and it needs to be explained here in more detail. Harvard architecture is a
newer concept than von-Neumann's. It rose out of the need to speed up the work of a
microcontroller. In Harvard architecture, data bus and address bus are separate. Thus a greater
flow of data is possible through the central processing unit, and of course, a greater speed of
work. Separating a program from data memory makes it further possible for instructions not to
have to be 8-bit words. PIC16F84 uses 14 bits for instructions which allows for all instructions to
be one word instructions. It is also typical for Harvard architecture to have fewer instructions than
von-Neumann's, and to have instructions usually executed in one cycle.

Microcontrollers with Harvard architecture are also called "RISC microcontrollers". RISC stands for
Reduced Instruction Set Computer. Microcontrollers with von-Neumann's architecture are called
'CISC microcontrollers'. Title CISC stands for Complex Instruction Set Computer.

Since PIC16F84 is a RISC microcontroller, that means that it has a reduced set of instructions,

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (2 of 5) [4/2/2003 16:17:37]

Chapter 2 - Microcontroller PIC16F84

more precisely 35 instructions . (ex. Intel's and Motorola's microcontrollers have over hundred
instructions) All of these instructions are executed in one cycle except for jump and branch
instructions. According to what its maker says, PIC16F84 usually reaches results of 2:1 in code
compression and 4:1 in speed in relation to other 8-bit microcontrollers in its class.

PIC16F84 perfectly fits many uses, from automotive industries and controlling home appliances to
industrial instruments, remote sensors, electrical doorlocks and safety devices. It is also ideal for
smart cards as well as for battery supplied devices because of its low consumption.

EEPROM memory makes it easier to apply microcontrollers to devices where permanent storage of
various parameters is needed (codes for transmitters, motor speed, receiver frequencies, etc.).
Low cost, low consumption, easy handling and flexibility make PIC16F84 applicable even in areas
where microcontrollers had not previously been considered (example: timer functions, interface
replacement in larger systems, coprocessor applications, etc.).

In System Programmability of this chip (along with using only two pins in data transfer) makes
possible the flexibility of a product, after assembling and testing have been completed. This
capability can be used to create assembly-line production, to store calibration data available only
after final testing, or it can be used to improve programs on finished products.

Clock is microcontroller's main starter, and is obtained from an external component called an
"oscillator"”. If we want to compare a microcontroller with a time clock, our "clock" would then be a
ticking sound we hear from the time clock. In that case, oscillator could be compared to a spring
that is wound so time clock can run. Also, force used to wind the time clock can be compared to
an electrical supply.

Clock from the oscillator enters a microcontroller via OSC1 pin where internal circuit of a
microcontroller divides the clock into four even clocks Q1, Q2, Q3, and Q4 which do not overlap.
These four clocks make up one instruction cycle (also called machine cycle) during which one
instruction is executed.

Execution of instruction starts by calling an instruction that is next in string. Instruction is called
from program memory on every Q1 and is written in instruction register on Q4. Decoding and
execution of instruction are done between the next Q1 and Q4 cycles. On the following diagram
we can see the relationship between instruction cycle and clock of the oscillator (OSC1) as well as
that of internal clocks Q1-Q4. Program counter (PC) holds information about the address of the
next instruction.

F2t P2 '3 tad 1 'a2 1as Tad 1en 12 1a31ad |
M LIl ririririrreriri|

Evcd INET LPC- 1]

Tach ST TP T]

I Eeocda ST (T

| | Tacn ST P]
Eiecde INST (FCA 1]

o=C

@ | | | :
GE L [l 1 [l 1 !
@z | | | |
| | | |

@4]] I
pe b T i Sy) e |
| | | I
T ST TR | I
I
|

Clockfinsruction Cycle

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (3 of 5) [4/2/2003 16:17:37]

Chapter 2 - Microcontroller PIC16F84

Instruction cycle consists of cycles Q1, Q2, Q3 and Q4. Cycles of calling and executing instructions
are connected in such a way that in order to make a call, one instruction cycle is needed, and one
more is needed for decoding and execution. However, due to pipelining, each instruction is
effectively executed in one cycle. If instruction causes a change on program counter, and PC
doesn't point to the following but to some other address (which can be the case with jumps or
with calling subprograms), two cycles are needed for executing an instruction. This is so because
instruction must be processed again, but this time from the right address. Cycle of calling begins
with Q1 clock, by writing into instruction register (IR). Decoding and executing begins with Q2, Q3
and Q4 clocks.

TCEYD TCY TEYZ TCY3 TG4 TCYS
1. MOVLY 550 Fetchi Execute
2. MOvWF FORTE Fetch Execute’
3. CALL SUB_1 Fetchs Executes
4. B5F PORTA, BIT2 [Forced MOF] Fetchd Fluzh
5. Instruction @@ addre=s= SUE_1 Fetch SUB_1 [[Execute=UB_1

Fetch=UB_1 +1

Al instructions are single cycle exept for any program branches. These take two cycles since the fetch
instructions iz "flushed" from the pipeline while the newy instruction is being fetched and then executed.

Instruction Pipeline Flow

TCYO reads in instruction MOVLW 55h (it doesn't matter to us what instruction was executed,
because there is no rectangle pictured on the bottom).

TCY1 executes instruction MOVLW 55h and reads in MOVWF PORTB.

TCY2 executes MOVWF PORTB and reads in CALL SUB_1.

TCY3 executes a call of a subprogram CALL SUB_1, and reads in instruction BSF PORTA, BIT3. As
this instruction is not the one we need, or is not the first instruction of a subprogram SUB_1
whose execution is next in order, instruction must be read in again. This is a good example of an
instruction needing more than one cycle.

TCY4 instruction cycle is totally used up for reading in the first instruction from a subprogram at
address SUB_1.

TCY5 executes the first instruction from a subprogram SUB_1 and reads in the next one.

PIC16F84 has a total of 18 pins. It is most frequently found in a DIP18 type of case but can also
be found in SMD case which is smaller from a DIP. DIP is an abbreviation for Dual In Package.
SMD is an abbreviation for Surface Mount Devices suggesting that holes for pins to go through
when mounting, aren't necessary in soldering this type of a component.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (4 of 5) [4/2/2003 16:17:37]

Chapter 2 - Microcontroller PIC16F84

1 L 1a
[raz rad []
2 17
[res roo (]
a 16
[IreHTOCE a5 []
d 13
WCLR ECE
% pic =<l
E|;'u';; 16F84 wdd ;I:.
[JREOANT RET]
T 12
[re1 REG |]
a 11
[Jre2 RES
Q 10
[Jre= RE4[]

Pins on PIC16F84 microcontroller have the following meaning:

Pin no.1 RA2 Second pin on port A. Has no additional function

Pin no.2 RA3 Third pin on port A. Has no additional function.

Pin no.3 RA4 Fourth pin on port A. TOCK1 which functions as a timer is also found on this pin
Pin no.4 MCLR Reset input and Vpp programming voltage of a microcontroller
Pin no.5 Vss Ground of power supply.

Pin no.6 RBO Zero pin on port B. Interrupt input is an additional function.

Pin no.7 RB1 First pin on port B. No additional function.

Pin n0.8 RB2 Second pin on port B. No additional function.

Pin n0.9 RB3 Third pin on port B. No additional function.

Pin no.10 RB4 Fourth pin on port B. No additional function.

Pin no.11 RB5 Fifth pin on port B. No additional function.

Pin no.12 RB6 Sixth pin on port B. 'Clock’ line in program mode.

Pin no.13 RB7 Seventh pin on port B. 'Data’ line in program mode.

Pin no.14 Vdd Positive power supply pole.

Pin no.15 OSC2 Pin assigned for connecting with an oscillator

Pin no.16 OSC1 Pin assigned for connecting with an oscillator

Pin no.17 RA2 Second pin on port A. No additional function

Pin no.18 RA1 First pin on port A. No additional function.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_01Poglavlje.htm (5 of 5) [4/2/2003 16:17:37]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Previous page | Table of contents | Chapter overview | Nextpage

Oscillator circuit is used for providing a microcontroller with a clock. Clock is needed so that
microcontroller could execute a program or program instructions.

Types of oscillators

PIC16F84 can work with four different configurations of an oscillator. Since configurations with
crystal oscillator and resistor-capacitor (RC) are the ones that are used most frequently, these are
the only ones we will mention here. Microcontroller type with a crystal oscillator has in its
designation XT, and a microcontroller with resistor-capacitor pair has a designation RC. This is
important because you need to mention the type of oscillator when buying a microcontroller.

XT Oscillator

Yo 13
FAz Rad [
7
i3 R [

8 0sc c2

R okl 5

s e L
13
MCLE R
pic ¢H;
v 16F84 wiaf] e 1
0502 L)

Connecting the quanz oscillator to give

Oscillator and capacitors can be packed in clock to a microcontroller
joint case with three pins. Such element is

called ceramic resonator and is represented
in charts like the one below. Center pins of
the element is the ground, while end pins are
connected with OSC1 and OSC2 pins on the
microcontroller. When designing a device,
the rule is to place an oscillator nearer a
microcontroller, so as to avoid any
interference on lines on which microcontroller
is receiving a clock. —

Crystal oscillator is kept in metal housing
with two pins where you have written down
the frequency at which crystal oscillates. One
ceramic capacitor of 30pF whose other end is
connected to the ground needs to be
connected with each pin.

o oo Jka—]—

onnecting a resonator onto a
microcontroller

RC Oscillator

In applications where great time precision is not necessary, RC oscillator offers additional savings
during purchase. Resonant frequency of RC oscillator depends on supply voltage rate, resistance
R, capacity C and working temperature. It should be mentioned here that resonant frequency is
also influenced by normal variations in process parameters, by tolerance of external R and C
components, etc.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_02Poglavlje.htm (1 of 3) [4/2/2003 16:17:41]

Chapter 2 - Microcontroller PIC16F84

oo
F
J_ g Clock
CI FIC1EF24
WS —
r OSC2/CLEaUT
Claded

Mate: This pin can be configured as inputfoutput pin

Above diagram shows how RC oscillator is connected with PIC16F84. With value of resistor R being
below 2.2k, oscillator can become unstable, or it can even stop the oscillation. With very high
value of R (ex.1M) oscillator becomes very sensitive to noise and humidity. It is recommended
that value of resistor R should be between 3 and 100k. Even though oscillator will work without an
external capacitor(C=0pF), capacitor above 20pF should still be used for noise and stability. No
matter which oscillator is being used, in order to get a clock that microcontroller works upon, a
clock of the oscillator must be divided by 4. Oscillator clock divided by 4 can also be obtained on
OSC2/CLKOUT pin, and can be used for testing or synchronizing other logical circuits.

PoQEy Q401 P03 D4 (nR D3 Qe
Tosc | | | | | | | | | | | | | | | | |
i . Tr:‘\r 1 . | . chE . | . chS . |

Felationship between a clock and a number of instruction cycles

Following a supply, oscillator starts oscillating. Oscillation at first has an unstable period and
amplitude, but after some period of time it becomes stabilized.

+5 7

Yoltage

|

Tirme

o

Crystal start up time

Signal of an oscillator clock after receiving the supply of a microcontroller

To prevent such inaccurate clock from influencing microcontroller's performance, we need to keep
the microcontroller in reset state during stabilization of oscillator's clock. Above diagram shows a
typical shape of a signal which microcontroller gets from the quartz oscillator following a supply.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_02Poglavlje.htm (2 of 3) [4/2/2003 16:17:41]

Chapter 2 - Microcontroller PIC16F84

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_02Poglavlje.htm (3 of 3) [4/2/2003 16:17:41]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Previous page | Table of contents | Chapter overview | Nextpage

Reset is used for putting the microcontroller into a ‘known' condition. That practically means that
microcontroller can behave rather inaccurately under certain undesirable conditions. In order to
continue its proper functioning it has to be reset, meaning all registers would be placed in a
starting position. Reset is not only used when microcontroller doesn't behave the way we want it
to, but can also be used when trying out a device as an interrupt in program execution, or to get a
microcontroller ready when reading in a program.

In order to prevent from bringing a oo Ra2 et RAd T
logical zero to MCLR pin accidentally 1
(line above it means that reset is RA3 R 6
activated by a logical zero), MCLR has RaHT K

to be connected via resistor to the

positive supply pole. Resistor should be "R pIc
between 5 and 10K. This kind of wss JRFRd
resistor whose function is to keep a 'HBMNT

certain line on a logical one as a

preventive, is called a pull up. REH

o
T o 2. o 0 N e = e 0 e

LIsing the internal reset circuit

Microcontroller PIC16F84 knows several sources of resets:

a) Reset during power on, POR (Power-On Reset)

b) Reset during regular work by bringing logical zero to MCLR microcontroller's pin.
c) Reset during SLEEP regime

d) Reset at watchdog timer (WDT) overflow

e) Reset during at WDT overflow during SLEEP work regime.

The most important reset sources are a) and b). The first one occurs each time a power supply is
brought to the microcontroller and serves to bring all registers to a starting position initial state.
The second one is a product of purposeful bringing in of a logical zero to MCLR pin during normal
operation of the microcontroller. This second one is often used in program development.

During a reset, RAM memory locations are not being reset. They are unknown during a power up
and are not changed at any reset. Unlike these, SFR registers are reset to a starting position initial
state. One of the most important effects of a reset is setting a program counter (PC) to zero
(0000h) , which enables the program to start executing from the first written instruction.

Reset at supply voltage drop below the permissible (Brown-out
Reset)

Impulse for resetting during voltage voltage-up is generated by microcontroller itself when it
detects an increase in supply Vdd (in a range from 1.2V to 1.8V). That impulse lasts 72ms which
is enough time for an oscillator to get stabilized. These 72ms are provided by an internal PWRT
timer which has its own RC oscillator. Microcontroller is in a reset mode as long as PWRT is active.
However, as device is working, problem arises when supply doesn't drop to zero but falls below
the limit that guarantees microcontroller's proper functioning. This is a likely case in practice,

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_03Poglavlje.htm (1 of 2) [4/2/2003 16:17:42]

Chapter 2 - Microcontroller PIC16F84

especially in industrial environment where disturbances and instability of supply are an everyday
occurrence. To solve this problem we need to make sure that microcontroller is in a reset state
each time supply falls below the approved limit.

wWoo -\b[
Reszet zignal Yo ¥2 ms]
AW,
- "E'IJE EUE NE R m e S AmEmE R EE R SmEmE A mEE -
Feszet zsignal | <72 ms "ﬁ"l—
oo /‘(
Reset signal ¢t ”ﬁ"l—

Example= of voltage supply drop below the proper level

If, according to electrical specification, internal reset circuit of a microcontroller can not satisfy the
needs, special electronic components can be used which are capable of generating the desired
reset signal. Beside this function, they can also function in watching over supply voltage. If
voltage drops below specified level, a logical zero would appear on MCLR pin which holds the
microcontroller in reset state until voltage is not within limits that guarantee correct functioning.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_03Poglavlje.htm (2 of 2) [4/2/2003 16:17:42]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Table of contents Chapter overview Next page

Central processing unit (CPU) is the brain of a microcontroller. That part is responsible for finding
and fetching the right instruction which needs to be executed, for decoding that instruction, and
finally for its execution.

Dats Busz a

EATM

File Registers (f)

Fan Address Bus I‘

Instruction reg. | L Addr b
| Direct Adressing TT it Indirect
Adressing

| FSR reg. |<::
| WWreg. |<::

Outline of the central processing unit-CRLU

Central processing unit connects all parts of the microcontroller into one whole. Surely, its most
important function is to decode program instructions. When programmer writes a program,
instructions have a clear form like MOVLW 0x20. However, in order for a microcontroller to
understand that, this 'letter' form of an instruction must be translated into a series of zeros and
ones which is called an 'opcode'. This transition from a letter to binary form is done by translators
such as assembler translator (also known as an assembler). Instruction thus fetched from
program memory must be decoded by a central processing unit. We can then select from the table
of all the instructions a set of actions which execute a assigned task defined by instruction. As
instructions may within themselves contain assignments which require different transfers of data
from one memory into another, from memory onto ports, or some other calculations, CPU must be
connected with all parts of the microcontroller. This is made possible through a data bus and an
address bus.

Arithmetic Logic Unit (ALU)

Arithmetic logic unit is responsible for performing operations of adding, subtracting, moving (left
or right within a register) and logic operations. Moving data inside a register is also known as
'shifting’. PIC16F84 contains an 8-bit arithmetic logic unit and 8-bit work registers.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (1 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84

| e — | ::z| STATUS reg. |c: 5
|| a :
m
L

3 WL

ﬁ E
AL
| W‘reg |

Arithmetic-logic unit and how it wiorks

In instructions with two operands, ordinarily one operand is in work register (W register), and the
other is one of the registers or a constant. By operand we mean the contents on which some
operation is being done, and a register is any one of the GPR or SFR registers. GPR is an
abreviation for '‘General Purposes Registers', and SFR for 'Special Function Registers'. In
instructions with one operand, an operand is either W register or one of the registers. As an
addition in doing operations in arithmetic and logic, ALU controls status bits (bits found in STATUS
register). Execution of some instructions affects status bits, which depends on the result itself.
Depending on which instruction is being executed, ALU can affect values of Carry (C), Digit Carry
(DC), and Zero (Z) bits in STATUS register.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (2 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84

Data Bus &
- 13 Program Counter
RO
Program 4 =
MmEtmary g level stack REAIM

(13-hit)

File Registers ()
14 Program Bus [

Fak Acddress Bus]

Instruction reg | Acdddr M

| Direct Adressing ﬁ Indirect
Adrezsing
| FZR req.
::{ STATUS reg. |<::
g
I L [
PALLA
Powver-up
4L Timer ﬂ
[a8
|n§t;§$2n — Dscillat!:ur 4
&Cortral Start-up timer AL
Power-an |
Feset
Timing PR Wigtchdog : L
generator [T " Timer | W reg |
COSC2CLEOUT RICLE: YWid vss
CSCTACLKIM

More detailed block outlineg of PICTEFS4 microcontroller

STATUS Register

AN RAN-O A0 RAY-1T RANV-T RAN-n RO RANW-x

IRF FF1 PO T FD £ b i

hit¥

Legend:
R = Readable hit W ='"ritahle hit

L = Unimplemented bit, read a= '00 - n = Yalue at power-on reset

bit O C (Carry) Transfer

Bit that is affected by operations of addition, subtraction and shifting.
1= transfer occured from the highest resulting bit

O=transfer did not occur

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (3 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84
C bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

bit 1 DC (Digit Carry) DC Transfer

Bit affected by operations of addition, subtraction and shifting. Unlike C bit, this bit represents
transfer from the fourth resulting place. It is set by addition when occurs carry from bit3 to bit4,
or by subtraction when occurs borrow from bit4 to bit3, or by shifting in both direction.
1=transfer occured on the fourth bit according to the order of the result

O=transfer did not occur

DC bit is affected by ADDWF, ADDLW, SUBLW, SUBWF instructions.

bit 2 Z (Zero bit) Indication of a zero result

This bit is set when the result of an executed arithmetic or logic operation is zero.
1=result equals zero

O=result does not equal zero

bit 3 PD (Power-down bit)

Bit which is set whenever power supply is brought to a microcontroller as it starts running, after
each regular reset and after execution of instruction CLRWDT. Instruction SLEEP resets it when
microcontroller falls into low consumption/usage regime. Its repeated setting is possible via reset
or by turning the supply on, or off . Setting can be triggered also by a signal on RBO/INT pin,
change on RB port, completion of writing in internal DATA EEPROM, and by a watchdog, too.
1=after supply has been turned on

0= executing SLEEP instruction

bit 4 TO Time-out ; Watchdog overflow.

Bit is set after turning on the supply and execution of CLRWDT and SLEEP instructions. Bit is reset
when watchdog gets to the end signaling that something is not right.

1=overflow did not occur

O=overflow did occur

bit6:5 RP1:RPO (Register Bank Select bits)

These two bits are upper part of the address for direct addressing. Since instructions which
address the memory directly have only seven bits, they need one more bit in order to address all
256 bytes which is how many bytes PIC16F84 has. RP1 bit is not used, but is left for some future
expansions of this microcontroller.

01=first bank

00=zero bank

bit 7 IRP (Register Bank Select bit)

Bit whose role is to be an eighth bit for indirect addressing of internal RAM.
1=bank 2 and 3

O=bank 0 and 1 (from 0Oh to FFh)

STATUS register contains arithmetic status ALU (C, DC, Z), RESET status (TO, PD) and bits for
selecting of memory bank (IRP, RP1, RP0). Considering that selection of memory bank is
controlled through this register, it has to be present in each bank. Memory bank will be discussed
in more detail in Memory organization chapter. STATUS register can be a destination for any
instruction, with any other register. If STATUS register is a destination for instructions which affect
Z, DC or C bits, then writing to these three bits is not possible.

OPTION register

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (4 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84

R EAM-T ST RAN-T BAV-T RANV-T RAN-T RAW-1
REPL | INTEDG |TOCS | TOSE | PSA | PS2 | P31 | PEO
hit?

Legend:
R =Readable bit W =Witakle bit
U = Unimplemerted bit, read az '"00 - n = ‘Yalue at power-on reset

bit 0:2 PSO, PS1, PS2 (Prescaler Rate Select bit)
These three bits define prescaler rate select bit. What a prescaler is and how these bits can affect
the work of a microcontroller will be explained in section on TMRO.

Bits TMRD WDT
b |

ooo 1: 1
ool 1:9 1.2
0in 1:8 1:4
0ii 116 1:8
100 1:32 1:16
101 1:64 1:32
iin 1:128 1 64
111 1256 1:128

bit 3 PSA (Prescaler Assignment bit)

Bit which assigns prescaler between TMRO and watchdog.
1=prescaler is assigned to watchdog

O=prescaler is assigned to a free-run timer TMRO

bit 4 TOSE (TMRO Source Edge Select bit)

If it is allowed to trigger TMRO by impulses from the pin RA4/TOCKI, this bit determines whether
this will be to the falling or rising edge of a signal.

1=falling edge

O=rising edge

bit 5 TOCS (TMRO Clock Source Select bit)

This pin enables free-run timer to increment its state either from internal oscillator on every ¥4 of
oscillator clock, or through external impulses on RA4/TOCKI pin.

1=external impulses

0=1/4 internal clock

bit 6 INTEDG (Interrupt Edge Select bit)

If interrupt is enabled possible this bit will determine the edge at which an interrupt will be
activated on pin RBO/INT.

1=rising edge

O=falling edge

bit 7 RBPU (PORTB Pull-up Enable bit)

This bit turns on and off internal "pull-up' resistors on port B.
1= "pull-up" resistors turned off

0= "pull-up” resistors turned on

Table of contents Chapter overview Next page

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (5 of 6) [4/2/2003 16:17:45]

Chapter 2 - Microcontroller PIC16F84

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_04Poglavlje.htm (6 of 6) [4/2/2003 16:17:45]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Previous page | Table of contents | Chapter overview | Nextpage

Port refers to a group of pins on a microcontroller which can be accessed simultaneously, or on
which we can set the desired combination of zeros and ones, or read from them an existing status.
Physically, port is a register inside a microcontroller which is connected by wires to the pins of a
microcontroller. Ports represent physical connection of Central Processing Unit with an outside
world. Microcontroller uses them in order to monitor or control other components or devices. Due
to functionality, some pins have twofold roles like PA4/TOCKI for instance, which is simultaneously
the fourth bit of port A and an external input for free-run counter. Selection of one of these two
pin functions is done in one of the configurational registers. An illustration of this is the fifth bit
TOCS in OPTION register. By selecting one of the functions the other one is disabled.

PORTA

1 Vgl

2 }

=)
—>| 1

DEOEOO®EOOOD

TRISA

CICICICICICICIE

Felationship between TRISA and PORTA redgister

All port pins can be defined as input or output, according to the needs of a device that's being
developed. In order to define a pin as input or output pin, the right combination of zeros and ones
must be written in TRIS register. If at the appropriate place in TRIS register a logical "1" is
written, then that pin is an input pin, and if the opposite is true, it's an output pin. Every port has
its proper TRIS register. Thus, port A has TRISA at address 85h, and port B has TRISB at address
86h.

PORTB

PORTB has 8 pins joined to it. The appropriate register for direction of data is TRISB at address
86h. Setting a bit in TRISB register defines the corresponding port pin as an input pin, and
resetting a bit in TRISB register defines the corresponding port pin as the output pin. Each pin on
PORTB has a weak internal pull-up resistor (resistor which defines a line to logic one) which can be
activated by resetting the seventh bit RBPU in OPTION register. These 'pull-up' resistors are
automatically being turned off when port pin is configured as an output. When a microcontroller is
started, pull-up's are disabled.

Four pins PORTB, RB7:RB4 can cause an interrupt which occurs when their status changes from

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_05Poglavlje.htm (1 of 2) [4/2/2003 16:17:47]

Chapter 2 - Microcontroller PIC16F84

logical one into logical zero and opposite. Only pins configured as input can cause this interrupt to
occur (if any RB7:RB4 pin is configured as an output, an interrupt won't be generated at the
change of status.) This interrupt option along with internal pull-up resistors makes it easier to
solve common problems we find in practice like for instance that of matrix keyboard. If rows on
the keyboard are connected to these pins, each push on a key will then cause an interrupt. A
microcontroller will determine which key is at hand while processing an interrupt It is not
recommended to refer to port B at the same time that interrupt is being processed.

clrf 3TATUS ;s BankO

clrf PORTE s PORTE=0

hsf STALTUS,RPO ;Bankl

mowvlw OxOF : Defining nput and output pins
movwE TRISE FWinting to TEISE register

The above example shows how pins 0, 1, 2, and 3 are declared for input, and pins 4, 5, 6, and 7
for output.

PORTA

PORTA has 5 pins joined to it. The corresponding register for data direction is TRISA at address
85h. Like with port B, setting a bit in TRISA register defines also the corresponding port pin as an
input pin, and clearing a bit in TRISA register defines the corresponding port pin as an output pin.
The fifth pin of port A has dual function. On that pin is also situated an external input for timer
TMRO. One of these two options is chosen by setting or resetting the TOCS bit (TMRO Clock Source
Select bit). This pin enables the timer TMRO to increase its status either from internal oscillator or
via external impulses on RA4/TOCKI pin.

hof 3TATUI, RPO :BankO

clrf PORTA :PORTL=0

bsf STATUS,RPO ;EBankl

movlw Ox1F : Defining input and output ping pinova
movwf TRIZA : Wiiting to TRISA regster

Example shows how pins O, 1, 2, 3, and 4 are declared to be input, and pins 5, 6, and 7 to be
output pins.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_05Poglavlje.htm (2 of 2) [4/2/2003 16:17:47]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Table of contents Chapter overview Next page

PIC16F84 has two separate memory blocks, one for data and the other for program. EEPROM
memory and GPR registers in RAM memory make up a data block, and FLASH memory makes up a
program block.

Program memory

Program memory has been realized in FLASH technology which makes it possible to program a
microcontroller many times before it's installed into a device, and even after its installment if
eventual changes in program or process parameters should occur. The size of program memory is
1024 locations with 14 bits width where locations zero and four are reserved for reset and
interrupt vector.

Data memory

Data memory consists of EEPROM and RAM memories. EEPROM memory consists of 64 eight bit
locations whose contents is not lost during loosing of power supply. EEPROM is not directly
addressible, but is accessed indirectly through EEADR and EEDATA registers. As EEPROM memory
usually serves for storing important parameters (for example, of a given temperature in
temperature regulators) , there is a strict procedure for writing in EEPROM which must be followed
in order to avoid accidental writing. RAM memory for data occupies space on a memory map from
location Ox0OC to Ox4F which comes to 68 locations. Locations of RAM memory are also called GPR
registers which is an abbreviation for General Purpose Registers. GPR registers can be accessed
regardless of which bank is selected at the moment.

SFR registers

Registers which take up first 12 locations in banks O and 1 are registers of specialized function
assigned with certain blocks of the microcontroller. These are called Special Function Registers.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (1 of 5) [4/2/2003 16:17:50]

Chapter 2 - Microcontroller PIC16F84

—+| EEDATA |
& Add
res FFPROM for
Stack lewvel 1 00k data Gl
Stack level 2 N I'Iih///
, O .
= . -
LLl A
L N I I [=
Stackdevel 8 Program —T —T— 2Fh
Adetrass o counter Zz
Bus J |: Data Bus
PC=12:0 FJ"’A
=12:0=
B
Z
4 |: Address d Address
Razaladdras 0000h 00k INOF INOF *1 a0k
01k THMRG TFTHOH alh
0zh PCL PGL azh
03h ETATUS ETATUS a3k
Inbzrrupl wadar addrass. 0004k 04h F&R F&R a4k
05h PORTA TRIEA ok Accessing
0&h PORTH TRIZE g6h Hhege
Urh &7h locations
Program memary e 0Sh EEDATA EECOHT 8ok s the
1024%14 — 03h EEADR EECOHZ * | B9h "
0k FCLATH FCLATH Bah same fesd
0Bh INTEOH INTCON 8Bh regardiess
CTCH ER of the bahk
: frarn which
i : We are
! B8 bytes RAM memary 41 ; making an
' GPR ! ACCess
: registers 5
P Arh LFh
=t Db Unimpiemen
ted
-+ e RNy
focatiohs, by
reading
them
We always
1FFFh 7Fh FFh et 0
Bankl Bank1
0.0 4 T
I
- FP1 RPO - - - - -

STATUS register

Mermory organization of microcontroller PICT16FE4

Memory Banks
Beside this 'length’ division to SFR and GPR registers, memory map is also divided in 'width' (see

preceding map) to two areas called 'banks'. Selecting one of the banks is done via RPO and RP1
bits in STATUS register.

Example:
bcf STATUS, RPO

Instruction BCF clears bit RPO (RPO=0) in STATUS register and thus sets up bank O.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (2 of 5) [4/2/2003 16:17:50]

Chapter 2 - Microcontroller PIC16F84

bsf STATUS, RPO

Instruction BSF sets the bit RPO (RPO=1) in STATUS register and thus sets up bank1.

Usually, groups of instructions that are often in use, are connected into one unit which can easily
be recalled in a program, and whose name has a clear meaning, so called Macros. With their use,
selection between two banks becomes more clear and the program itself more legible.

BANKO nacro
Bcf STATUS, RPO ; Sel ect nenory bank O
Endm

BANK1 macro
Bsf STATUS, RPO ; Sel ect nenory bank 1
Endm

Locations OCh - 4Fh are general purpose registers (GPR) which are used as RAM memory.
When locations 8Ch - CFh in Bank 1 are accessed, we actually access the exact same
locations in Bank 0. In other words , whenever you wish to access one of the GPR
registers, there is no need to worry about which bank we are in!

Program Counter

Program counter (PC) is a 13 bit register that contains the address of the instruction being
executed. By its incrementing or change (ex. in case of jumps) microcontroller executes program
instructions step-by-step.

Stack

PIC16F84 has a 13-bit stack with 8 levels, or in other words, a group of 8 memory locations of 13 -
bits width with special function. Its basic role is to keep the value of program counter after a jump
from the main program to an address of a subprogram . In order for a program to know how to go
back to the point where it started from, it has to return the value of a program counter from a
stack. When moving from a program to a subprogram, program counter is being pushed onto a
stack (example of this is CALL instruction). When executing instructions such as RETURN, RETLW
or RETFIE which were executed at the end of a subprogram, program counter was taken from a
stack so that program could continue where was stopped before it was interrupted. These
operations of placing on and taking off from a program counter stack are called PUSH and POP,
and are named according similar instructions on some bigger microcontrollers.

In System Programming
In order to program a program memory, microcontroller must be set to special working mode by
bringing up MCLR pin to 13.5V, and supply voltage Vdd has to be stabilized between 4.5V to 5.5V.

Program memory can be programmed serially using two 'data/clock’ pins which must previously
be separated from device lines, so that errors wouldn't come up during programming.

Addressing modes

RAM memory locations can be accessed directly or indirectly.

Direct Addressing
Direct Addressing is done through a 9-bit address. This address is obtained by connecting 7th bit

of direct address of an instruction with two bits (RP1, RPO) from STATUS register as is shown on
the following picture. Any access to SFR registers can be an example of direct addressing.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (3 of 5) [4/2/2003 16:17:50]

Chapter 2 - Microcontroller PIC16F84

Bsf STATUS, RPO ; Bankl

nmovl w OxFF ; Ww=OxFF

movwf TRI SA ;address of TRISA register is taken from
;instruction nmovwf

Sth ahd Btk
Dita of
STATLS
reqister Sevieh Bits fromm inastructions
FP1 RPZ2 j
P I I
Pl *
Selectad 00 01
bank a0
/'—h
] 0B
Selected location
ac
4F
TF

Bankn Bank1

Direct addressing

Indirect Addressing

Indirect unlike direct addressing does not take an address from an instruction but makes it with
the help of IRP bit of STATUS and FSR registers. Addressed location is accessed via INDF register
which in fact holds the address indicated by a FSR. In other words, any instruction which uses
INDF as its register in reality accesses data indicated by a FSR register. Let's say, for instance,
that one general purpose register (GPR) at address OFh contains a value of 20. By writing a value
of OFh in FSR register we will get a register indicator at address OFh, and by reading from INDF
register, we will get a value of 20, which means that we have read from the first register its value
without accessing it directly (but via FSR and INDF). It appears that this type of addressing does
not have any advantages over direct addressing, but certain needs do exist during programming

which can be solved smoothly only through indirect addressing.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (4 of 5) [4/2/2003 16:17:50]

Chapter 2 - Microcontroller PIC16F84

Seventh bt of
STATUS
redister
IRF 7 1]
+ FSR
Selgctecs
an 01
hani 00
/" —p
) o
Selectad location e ekt

ac

4F

TF

Bankl Bank1

Indirect addressing
An of such example can be sending a set of data via serial communication, working with buffers

and indicators (which will be discussed further in a chapter with examples), or erasing a part of
RAM memory (16 locations) as in the following instance.

Mowlw Ox0OC ;initialization of starting address
Mowvwf F3IR ;F2E indicates address 0x0C

LooP clef INDF INDF = 0O
inct F3R ;address = initial address + 1
btf=s=s F3E,4 ;are all locations erased
goto loop ;no, go through a loop again

CONTINUE
: !} ves, continue with program

Reading data from INDF register when the contents of FSR register is equal to zero returns the
value of zero, and writing to it results in NOP operation (no operation).

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_06Poglavlje.htm (5 of 5) [4/2/2003 16:17:50]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

| Previous page | Table of contents | Chapter overview | Nextpage

Interrupts are a mechanism of a microcontroller which enables it to respond to some events at the
moment when they occur, regardless of what microcontroller is doing at the time. This is a very
important part, because it provides connection between a microcontroller and environment which
surrounds it. Generally, each interrupt changes the program flow, interrupts it and after executing an
interrupt subprogram (interrupt routine) it continues from that same point on.

FIC1EFE4
1
|: RAZ —_— Point at which
2 an interrpot
[RAZ . occured
Program execution
d flawe
[] resTock) ’ .
45 4 A — L
[MCLR subpragram
5 where interrupt is
E[] [] v processed
REBOMNT [
T1u—|; --------------------------- +
2 g R Continuation of
] re2 the normal Return from
prograrm subprograrm
= o execution
[fre: L __

One of the possible sources of an interrupt and how it affects the main program
One of the possible sources of an interrupt and how it affects the main program

Control register of an interrupt is called INTCON and is found at OBh address. Its role is to allow or
disallowed interrupts, and in case they are not allowed, it registers single interrupt requests through
its own bits.

INTCON Register

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (1 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

RAW-0 RAM-O RAN-O RAV-D RANV-D RAMN-OD RAN-O RAMNO

GIE | EEIE | TQIE | INTE | RBIE | TOIF | INTF | REIF

hit ¥

Legend:
R = Readable bit W ='Writable bit
L = Unitmplemented bit, read as'0' - n = Value st poveer-on reset

bit 0 RBIF (RB Port Change Interrupt Flag bit) Bit which informs about changes on pins 4, 5, 6 and 7
of port B.

1=at least one pin has changed its status

O=no change occured on any of the pins

bit 1 INTF (INT External Interrupt Flag bit) External interrupt occured.

1=interrupt occured

O=interrupt did not occur

If a rising or falling edge was detected on pin RBO/INT, (which is defined with bit INTEDG in OPTION
register), bit INTF is set. Bit must be cleared in interrupt subprogram in order to detect the next
interrupt.

bit 2 TOIF (TMRO Overflow Interrupt Flag bit) Overflow of counter TMRO.
1= counter changed its status from FFh to 00h

O=overflow did not occur

Bit must be cleared in program in order for an interrupt to be detected.

bit 3 RBIE (RB port change Interrupt Enable bit) Enables interrupts to occur at the change of status
of pins 4, 5, 6, and 7 of port B.

1= enables interrupts at the change of status

O=interrupts disabled at the change of status

If RBIE and RBIF were simultaneously set, an interrupt would occur.

bit 4 INTE (INT External Interrupt Enable bit) Bit which enables external interrupt from pin RBO/INT.
l1=external interrupt enabled

O=external interrupt disabled

If INTE and INTF were set simultaneously, an interrupt would occur.

bit 5 TOIE (TMRO Overflow Interrupt Enable bit) Bit which enables interrupts during counter TMRO
overflow.

1=interrupt enabled

O=interrupt disabled

If TOIE and TOIF were set simultaneously, interrupt would occur.

Bit 6 EEIE (EEPROM Write Complete Interrupt Enable bit) Bit which enables an interrupt at the end
of a writing routine to EEPROM

1=interrupt enabled

O=interrupt disabled

If EEIE and EEIF (which is in EECONL1 register) were set simultaneously , an interrupt would occur.

Bit 7 GIE (Global Interrupt Enable bit) Bit which enables or disables all interrupts.
1=all interrupts are enabled
O=all interrupts are disabled

PIC16F84 has four interrupt sources:

1. Termination of writing data to EEPROM

2. TMRO interrupt caused by timer overflow

3. Interrupt during alteration on RB4, RB5, RB6 and RB7 pins of port B.
4. External interrupt from RBO/INT pin of microcontroller

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (2 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

Generally speaking, each interrupt source has two bits joined to it. One enables interrupts, and the
other detects when interrupts occur. There is one common bit called GIE which can be used to
disallow or enable all interrupts simultaneously. This bit is very useful when writing a program
because it allows for all interrupts to be disabled for a period of time, so that execution of some
important part of a program would not be interrupted. When instruction which resets GIE bit was
executed (GIE=O0, all interrupts disallowed), any interrupt that remained unsolved should be ignored.

EE|EQ/D®:/D

EEIF

REIE
2 ¢

AP ROP
@/GHBF |

INTE{g'““l‘m“‘,..{}(:){g‘wﬂ“‘..l3

INTF

INTERRUPT

Simplified outline of PIC16F34 microcontroller interrupt

Interrupts which remained unsolved and were ignored, are processed when GIE bit (GIE=1, all
interrupts allowed) would be cleared. When interrupt was answered, GIE bit was cleared so that any
additional interrupts would be disabled, return address was pushed onto stack and address 0004h
was written in program counter - only after this does replying to an interrupt begin! After interrupt is
processed, bit whose setting caused an interrupt must be cleared, or interrupt routine would
automatically be processed over again during a return to the main program.

Keeping the contents of important registers

Only return value of program counter is stored on a stack during an interrupt (by return value of
program counter we mean the address of the instruction which was to be executed, but wasn't
because interrupt occured). Keeping only the value of program counter is often not enough. Some
registers which are already in use in the main program can also be in use in interrupt routine. If they
were not retained, main program would during a return from an interrupt routine get completely
different values in those registers, which would cause an error in the program. One example for such
a case is contents of the work register W. If we suppose that main program was using work register
W for some of its operations, and if it had stored in it some value that's important for the following
instruction, then an interrupt which occurs before that instruction would change the value of work

register W which would directly be influenced the main program.

Procedure of recording important registers before going to an interrupt routine is called PUSH, while
the procedure which brings recorded values back, is called POP. PUSH and POP are instructions with
some other microcontrollers (Intel), but are so widely accepted that a whole operation is named after
them. PIC16F84 does not have instructions like PUSH and POP, and they have to be programmed.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (3 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

Before the interrupt
occured, woarking
register W had the

valug ' "

Interrpt [
R - Interrupt
* subprogram
where interrupt
pracessing has

changed work
register VW to

Instructionno | ——»

Fallowing
instruction after an

interrupt checks
out the value of

weark register Wy *
Retun o |
"
Instructionno. N+ 1 ——» |5 W= 7 program

NE(_[_}DA

One of the possible cases of errors if saving was not done when going
to a subprogram of an interrupt

One of the possible cases of errors if saving was not done when going to a subprogram of
an interrupt

Due to simplicity and frequent usage, these parts of the program can be made as macros. The
concept of a Macro is explained in "Program assembly language". In the following example, contents
of W and STATUS registers are stored in W_TEMP and STATUS_TEMP variables prior to interrupt
routine. At the beginning of PUSH routine we need to check presently selected bank because
W_TEMP and STATUS_TEMP are found in bank 0. For exchange of data between these registers,
SWAPF instruction is used instead of MOVF because it does not affect the status of STATUS register
bits.

Example is a program assembler for following steps:

. Testing the current bank

. Storing W register regardless of the current bank

. Storing STATUS register in bank O.

. Executing interrupt routine for interrupt processing (ISR)
. Restores STATUS register

. Restores W register

OO WNE

If there are some more variables or registers that need to be stored, then they need to be kept after
storing STATUS register (step 3), and brought back before STATUS register is restored (step 5).

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (4 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

Push
BTF5S STATUS, RPO
GOTS RPOCLEAR
BCF STATUS, RPO
rCAE W TEMP
SWWAPF STATUS, W
MOVAAE STATLIS_TEMP
BSF STATUS_TEMPE 1
SOTD ISE_Code
FEPOCLEAR
rMIOWE WY TEMP
SWWAPF STATLIS, W
MOVAAE STATLIS TEMP

ISR_Code

¢ [Interrupt subprogram)

Pop
SVUARF STATLUIS_TEMP, W
mMOYE STATLIS
BTFSS STATUS, RPO
GOTO Return_WREG
BCF STATUS, RPO
SVWARF W TEMP F
SWAPE W TEMP W
BSF STATUS, RPO
FETFIE

Feturn \WREG
SVUAPF W TEMP F
SVUAFF W TEMP W
FETFIE

mm ma e tma ma e = ma

e e e me ma e ma ma =

BankO

Yes

MO, go to BankO
Save W register

W - STATIIS
STATUS_TEMP «<- W
RPO(STATUS TEMPF)
Push completed

1

Save W register
Wil - STATLIS
STATUS _TEMP - W

Wl - STATLIS _TEMP

STATLUS <=\

Bank 17

M,

YES, go to BankO

Return contents of W register

Return to Bank 1
POP complete

Return contents of W register

POP cormpleted

The same example can be realized by using macros, thus getting a more legible program. Macros
that are already defined can be used for writing new macros. Macros BANK1 and BANKO which are
explained in "Memory organization" chapter are used with macros ‘push' and 'pop".

push macro
movwt W Ternp WY Temp < - W
swapf W _Temp,F 1 Swap themn
BAME1L sMacro for switching to Bank1
swapf COFTION_REG,W W = - OFTIOMN_REG
movwt Opton_Temp Ophon_Temp = - W
BANED rmacro for switching to BankO
swapf STATUS,\W S - STATUS
movwf Stat Temp 1Stat Temp <-4
endm sEnd aof push macro
pop M acro
swapf Stat_Temp, W DW= - Stat_Temp
movwt STATUS JETATLIS - W
BAME 1 sMacro for switching to Bank1
swapf Option_Temp, W DY - Qption_Temp
movwt OPTION _REG JOPTION _REG =-'W
BARED sMacro for switching o BankO
swapf W Temnp,\W i - WY Temp
endm 1End of a pop macro

External interrupt on RBO/INT pin of microcontroller

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (5 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

External interrupt on RBO/INT pin is triggered by rising signal edge (if bit INTEDG=1 in OPTION<6>
register), or falling edge (if INTEDG=0). When correct signal appears on INT pin, INTF bit is set in
INTCON register. INTF bit (INTCON<1>) must be reset in interrupt routine, so that interrupt wouldn't
occur again while going back to the main program. This is an important part of the program which
programmer must not forget, or program will constantly go into interrupt routine. Interrupt can be
turned off by resetting INTE control bit (INTCON<4>).

Interrupt during a TMRO counter overflow

Overflow of TMRO counter (from FFh to O0h) will set TOIF (INTCON<2>) bit. This is very important
interrupt because many real problems can be solved using this interrupt. One of the examples is time
measurement. If we know how much time counter needs in order to complete one cycle from 00h to
FFh, then a number of interrupts multiplied by that amount of time will yield the total of elapsed
time. In interrupt routine some variable would be incremented in RAM memory, value of that variable
multiplied by the amount of time the counter needs to count through a whole cycle, would yield total
elapsed time. Interrupt can be turned on/off by setting/resetting TOIE (INTCON<5>) bit.

Interrupt during a change on pins 4, 5, 6 and 7 of port B

Change of input signal on PORTB <7:4> sets RBIF (INTCON<O>) bit. Four pins RB7, RB6, RB5 and
RB4 of port B, can trigger an interrupt which occurs when status on them changes from logic one to
logic zero, or vice versa. For pins to be sensitive to this change, they must be defined as input. If any
one of them is defined as output, interrupt will not be generated at the change of status. If they are
defined as input, their current state is compared to the old value which was stored at the last reading
from port B. Interrupt can be turned on/off by setting/resetting RBIE bit in INTCON register.

Interrupt upon finishing write-subroutine to EEPROM

This interrupt is of practical nature only. Since writing to one EEPROM location takes about 10ms
(which is a long time in the notion of a microcontroller), it doesn't pay off to a microcontroller to wait
for writing to end. Thus interrupt mechanism is added which allows the microcontroller to continue
executing the main program, while writing in EEPROM is being done in the background. When writing
is completed, interrupt informs the microcontroller that writing has ended. EEIF bit, through which
this informing is done, is found in EECONL1 register. Occurrence of an interrupt can be disabled by
resetting the EEIE bit in INTCON register.

Interrupt initialization

In order to use an interrupt mechanism of a microcontroller, some preparatory tasks need to be
performed. These procedures are in short called "initialization". By initialization we define to what
interrupts the microcontroller will respond, and which ones it will ignore. If we do not set the bit that
allows a certain interrupt, program will not execute an interrupt subprogram. Through this we can
obtain control over interrupt occurrence, which is very useful.

clrf INTCON ; all interrupts disabled
mowlw B'O0010000° ; external interrupt only is enabled
b=af INTCCON, GIE ; occurrence of interrupts allowed

The above example shows initialization of external interrupt on RBO pin of a microcontroller. Where
we see one being set, that means that interrupt is enabled. Occurrence of other interrupts is not
allowed, and all interrupts together are disallowed until GIE bit is keeping to one.

The following example shows a typical way of handling interrupts. PIC16F84 has only one location
where the address of an interrupt subprogram is stored. This means that first we need to detect
which interrupt is at hand (if more than one interrupt source is available), and then we can execute
that part of a program which refers to that interrupt.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (6 of 7) [4/2/2003 16:17:55]

Chapter 2 - Microcontroller PIC16F84

ory ISE_LDDR ISR _ADDE is interrupt routine address
btfsc INTCCON, GIE ;ZIE bit turned off?

goto ISR ADR sno, go bhack to the bheginning

FUSH ;keep the contents of important registers
bhtfsc INTCOMN, EREIF schange on pins 4, 5, 6 and 7 of portc EB?
goto ISR PORTE :jump to that section

bhtfsc INTCON, INTF sexternal interrupt occured?

goto ISE_REOD jump to that part

btfse INTCON, TOIF soverflow of timer THEREO?

goto ISR THRO Jjump to that section

BEANE] ;Bankl because of EECON]

Etf=sc EECCOHN1, EEIF ;writing to EEPEOM completed?

goto ISR _EEPROM :jump to that section

BANED ;BankO

ISR PORTE
: ;section of code which i=s processed by an
Jinterrupt 7

goto END IZR PJup to the exit of an interrupt
ISR _RED
: ;Zection of code processing an interrupt?

goto END T3R sjump to exit of an interrupt.
ISR _THEO
: ;eection of code processing an interrupt

goto END I35R ;jump to the exit of an interrupt
ISE_EEPROM

;gection of code which processes an interrupt

goto END ISR PJump to an exit from an interrupt.
END ISR ;
Pap sbringing back the contents of important
;registers
RETFIE sreturn and setting of GIE hit

Return from interrupt routine can be accomplished with instructions RETURN, RETLW and
RETFIE. It is recommended that instruction RETFIE be used because that instruction is the
only one which automatically sets the GIE bit which allows new interrupts to occur.

..

}

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_07Poglavlje.htm (7 of 7) [4/2/2003 16:17:55]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

| Prévious page | Table of contents | Chapteroverview | Nextpage |

Timers are usually most complicated parts of a microcontroller, so it is necessary to set aside more
time for their explaining. With their application it is possible to create relations between a real
dimension such as "time" and a variable which represents status of a timer within a microcontroller.
Physically, timer is a register whose value is continually increasing to 255, and then it starts all over
again: 0, 1, 2, 3, 4...255....0,1, 2, 3...... etc.

Data Bus
hit 7 TMRO
OO0 @O OO)T -
INTCON ToF LA23.255.0.1.2.255.0..1 ...

4 | |

Dscillator clock

PS? PS1 PSO e
a O0— Prescater .2 — _| |1 L1 L[1

0 1——= Prescaler1:4 —> |
1 U—= Prescaler 1.8 — _ |

o
0
0
-

—1 |
OOOOOmO T

OPTION F=2 P31 PO

Felation between the timer TMREO and prescaler

This incrementing is done in the background of everything a microcontroller does. It is up to
programmer to "think up a way" how he will take advantage of this characteristic for his needs. One of
the ways is increasing some variable on each timer overflow. If we know how much time a timer
needs to make one complete round, then multiplying the value of a variable by that time will yield the
total amount of elapsed time.

PIC16F84 has an 8-bit timer. Number of bits determines what value timer counts to before starting to
count from zero again. In the case of an 8-bit timer, that number is 256. A simplified scheme of
relation between a timer and a prescaler is represented on the previous diagram. Prescaler is a name
for the part of a microcontroller which divides oscillator clock before it will reach logic that increases
timer status. Number which divides a clock is defined through first three bits in OPTION register. The
highest divisor is 256. This actually means that only at every 256th clock, timer value would increase

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (1 of 5) [4/2/2003 16:17:58]

Chapter 2 - Microcontroller PIC16F84

by one. This provides us with the ability to measure longer timer periods.

A @2 @slad o Q2ladiad ol Q2 ladlad el Q2 e iad (A [Qa2la3iad |
e AV AV VAt oUW WAl oW e Na Wl aWaWalal oWaWaWat
clkouteny L . T A %

Timerd L T S 137 0 T ;i
TOIF bit i ' :
GIE bit \

Mate: 1 Interrupt flag bit TOIF iz examined at the nevy place &t each @1 cycle
CLEOUT exists only in RC oscillatar mode

Time diagram of interrupt occurence with TMRO timer

After each count up to 255, timer resets its value to zero and starts with a new cycle of counting to
255. During each transition from 255 to zero, TOIF bit in INTCOM register is set. If interrupts are
allowed to occur, this can be taken advantage of in generating interrupts and in processing interrupt
routine. It is up to programmer to reset TOIF bit in interrupt routine, so that new interrupt, or new
overflow could be detected. Beside the internal oscillator clock, timer status can also be increased by
the external clock on RA4/TOCKI pin. Choosing one of these two options is done in OPTION register
through TOCS bit. If this option of external clock was selected, it would be possible to define the edge
of a signal (rising or falling), on which timer would increase its value.

hetal bugles
Inductive sensor
FIC16FE4
+12 +5
T Az
g Rt 1:4
RANTOCKI 1]
E : AR prescaler Intermpt
% —‘

255 —»(]

DOOOOTOT

TMRO

REMINT

FEB1

1
¥
O [o [b= JaJrJ]
=
(]
—
A

Motor axis of the

working machine RE>

REZ Data Bus

Determining a number of full axis turns of the motor

In practice, one of the typical example that is solved via external clock and a timer is counting full
turns of an axis of some production machine, like transformer winder for instance. Let's wind four
metal screws on the axis of a winder. These four screws will represent metal convexity. Let's place

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (2 of 5) [4/2/2003 16:17:58]

Chapter 2 - Microcontroller PIC16F84

now the inductive sensor at a distance of 5mm from the head of a screw. Inductive sensor will
generate the falling signal every time the head of the screw is parallel with sensor head. Each signal
will represent one fourth of a full turn, and the sum of all full turns will be found in TMRO timer.
Program can easily read this data from the timer through a data bus.

The following example illustrates how to initialize timer to signal falling edges from external clock
source with a prescaler 1:4. Timer works in "polig" mode.

clrf THEO ; TMRO=0
clrf IMNTCON sInterrupts and TOIF=0 disallowed
h=sf STATUS,RERO ;Bankl because of OFPTICH REG

mowly B'00110001' ;prescaler 1:4, falling edge selected external
selock source and pull up fselected resistors
;son port B activated

wovwt OPTICW REG :OPTICN BEEG <- W

TO OWFL
brtfss INTCON, TOIF stesting overflow bit
goto TO OWFL ;interrupt has not occured yet, wait

;! [FPart of the program which processes data regarding a nuber of turns)

goto TO OVFL swaiting for new overflow

The same example can be realized through an interrupt in the following way:

push macro

moywt W Temp WY Temp <- W

swapf W _Temp,F 1 Swap them

BAME1 tMacro for switching o Bank1
swapf OPTIOMN_REG W Jw - OFTION_REG

movwf Ophon_Temp Ophon_Temp <- W

BAMKD smacro for switching to Bank0
swapf STATUS, W J - STATUS

movwf Stat Temp ;5tat Temp = -W

endm sEnd aof push macro

pap M acro

swapf Stat_Termp,\W WY - Stat Temp

moywf STATUS JSTATLS = - W

BAME1 tMacro for switching o Bank1
swapf Option_Termnp, W WY - Option_Temp

movwf OFTICM REG JOFTION _REG < -\

BAMED tMacro for switching o Bank0O
swapf W _Temp,\W WY - WY Temp

endm 1Bnd of a pop macro

Prescaler can be assigned either timer TMRO or a watchdog. Watchdog is a mechanism which
microcontroller uses to defend itself against programs getting stuck. As with any other electrical
circuit, so with a microcontroller too can occur failure, or some work impairment. Unfortunately,
microcontroller also has program where problems can occur as well. When this happens,
microcontroller will stop working and will remain in that state until someone resets it. Because of this,
watchdog mechanism has been introduced. After a certain period of time, watchdog resets the
microcontroller (microcontroller in fact resets itself). Watchdog works on a simple principle: if timer
overflow occurs, microcontroller is reset, and it starts executing a program all over again. In this way,
reset will occur in case of both correct and incorrect functioning. Next step is preventing reset in case
of correct functioning, which is done by writing zero in WDT register (instruction CLRWDT) every time
it nears its overflow. Thus program will prevent a reset as long as it's executing correctly. Once it gets
stuck, zero will not be written, overflow of WDT timer and a reset will occur which will bring the
microcontroller back to correct functioning again.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (3 of 5) [4/2/2003 16:17:58]

Chapter 2 - Microcontroller PIC16F84

Prescaler is accorded to timer TMRO, or to watchdog timer trough PSA bit in OPTION register. By
clearing PSA bit, prescaler will be accorded to timer TMRO. When prescaler is accorded to timer TMRO,
all instructions of writing to TMRO register (CLRF TMRO, MOVWF TMRO, BSF TMRO,...) will clear
prescaler. When prescaler is assigned to a watchdog timer, only CLRWDT instruction will clear a
prescaler and watchdog timer at the same time . Prescaler change is completely under programmer's
control, and can be changed while program is running.

..

There is only one prescaler and one timer. Depending on the needs, they are assigned
either to timer TMRO or to a watchdog.

OPTION Control Register

RN RN RN RN R A= A= A=
[FEPU U'F| wtED: | Tocs | TosE PSa Ps2 = P50
hit 7 hit 0
Legend:

R = Readable bit W = writable bit
= Unimplemented bit, read as '0° -n=Yalue at POR reset

Bit 0:2 PSO, PS1, PS2 (Prescaler Rate Select bit)
The subject of a prescaler, and how these bits affect the work of a microcontroller will be covered in
section on TMRO.

Bits TMREO WDT

ano 1:2 1:1
ool 1:4 1:2
0410 1:8 1:4
01l 1:16 1:8
100 1:32 1:16
101 1: G4 1:32
iin 1128 1 64
111 1256 1:128

bit 3 PSA (Prescaler Assignment bit)

Bit which assigns prescaler between TMRO and watchdog timer.
1=prescaler is assigned to watchdog timer.

O=prescaler is assighed to free timer TMRO

bit 4 TOSE (TMRO Source Edge Select bit)

If trigger TMRO was enabled with impulses from a RA4/TOCKI pin, this bit would determine whether it
would be on the rising or falling edge of a signal.

1=falling edge

O=rising edge

bit 5 TOCS (TMRO Clock Source Select bit)

This pin enables a free-run timer to increment its value either from an internal oscillator, i.e. every
1/4 of oscillator clock, or via external impulses on RA4/TOCKI pin.

1=external impulses

0=1/4 internal clock

bit 6 INTEDG (Interrupt Edge Select bit)

If occurrence of interrupts was enabled, this bit would determine at what edge interrupt on RBO/INT
pin would occur.

1= rising edge

0= falling edge

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (4 of 5) [4/2/2003 16:17:58]

Chapter 2 - Microcontroller PIC16F84
bit 7 RBPU (PORTB Pull-up Enable bit)
This bit turns internal pull-up resistors on port B on or off.

1="pull-up' resistors turned on
O="pull-up' resistors turned off

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://mww.mikroelektronika.co.yu/english/product/books/PICbook/2_08Poglavlje.htm (5 of 5) [4/2/2003 16:17:58]

mailto:office@mikroelektronika.co.yu

Chapter 2 - Microcontroller PIC16F84

Previous page | Table of contents | Chapter overview | Nextpage

PIC16F84 has 64 bytes of EEPROM memory locations on addresses from 00h to 63h those can be

written to or read from. The most important characteristic of this memory is that it does not loose
its contents during power supply turned off. That practically means that what was written to it will
be remaining even if microcontroller is turned off. Data can be retained in EEPROM without power
supply for up to 40 years (as manufacturer of PIC16F84 microcontroller states), and up to 10000

cycles of writing can be executed.

In practice, EEPROM memory is used for storing important data or some process parameters.
One such parameter is a given temperature, assigned when setting up a temperature regulator to
some process. If that data wasn't retained, it would be necessary to adjust a given temperature
after each loss of supply. Since this is very impractical (and even dangerous), manufacturers of
microcontrollers have began installing one smaller type of EEPROM memory.

EEPROM memory is placed in a special memory space and can be accessed through special
registers. These registers are:

e EEDATA at address 08h, which holds read data or that to be written.

e EEADR at address 09h, which contains an address of EEPROM location being accessed.

e EECONL1 at address 88h, which contains control bits.

e EECON2 at address 89h. This register does not exist physically and serves to protect EEPROM
from accidental writing.

EECONL1 register at address 88h is a control register with five implemented bits.
Bits 5, 6 and 7 are not used, and by reading always are zero. Interpretation of EECON1 register
bits follows.

EECON1 Register

-0 -0 -0 R RN Rz Rr=-0 RS-
| — | — | — | EeF | wrERR | WREN VR rD |
hit ¥ kit 0
Legend:
R =Readable bit W= writable bit
= Unimplemented bit, read as '0° -n=Malue at POR reset

bit 0 RD (Read Control bit)

Setting this bit initializes transfer of data from address defined in EEADR to EEDATA register. Since
time is not as essential in reading data as in writing, data from EEDATA can already be used
further in the next instruction.

1=initializes reading

0O=does not initialize reading

bit 1 WR (Write Control bit)

Setting of this bit initializes writing data from EEDATA register to the address specified trough
EEADR register.

1=initializes writing

0O=does not initialize writing

bit 2 WREN (EEPROM Write Enable bit) Enables writing to EEPROM
If this bit was not set, microcontroller would not allow writing to EEPROM.
1=writing allowed

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_09Poglavlje.htm (1 of 3) [4/2/2003 16:18:00]

Chapter 2 - Microcontroller PIC16F84
O=writing disallowed

bit 3 WRERR (Write EEPROM Error Flag) Error during writing to EEPROM

This bit was set only in cases when writing to EEPROM had been interrupted by a reset signal or
by running out of time in watchdog timer (if it's activated).

1=error occured

O=error did not occur

bit 4 EEIF (EEPROM Write Operation Interrupt Flag bit) Bit used to inform that writing data to
EEPROM has ended.

When writing has terminated, this bit would be set automatically. Programmer must clear EEIF bit
in his program in order to detect new termination of writing.

1=writing terminated

O=writing not terminated yet, or has not started

Reading from EEPROM Memory

Setting the RD bit initializes transfer of data from address found in EEADR register to EEDATA
register. As in reading data we don't need so much time as in writing, data taken over from
EEDATA register can already be used further in the next instruction.

Sample of the part of a program which reads data in EEPROM, could look something like the

following:
hot STATUOZ, EPO rbhank0, bhecguse EELDE is at 09h
wowlw 0x00 saddress of location being read
movwt EEALADE raddress transferred to EELDR
h=t STATUOZ, EPO sbhankl bhecause EECON1 i= at 885h
h=t EECON1, RD ;reading from EEPROHM
bhet ITATUZ, EREPO ;Bank0 bhecause EEDATLZ is at 0&8h
mwowEt EEDATA, W ;W «<—— EEDATAL

After the last program instruction, contents from an EEPROM address zero can be found in working
register w.

Writing to EEPROM Memory

In order to write data to EEPROM location, programmer must first write address to EEADR register
and data to EEDATA register. Only then is it useful to set WR bit which sets the whole action in
motion. WR bit will be reset, and EEIF bit set following a writing what may be used in processing
interrupts. Values 55h and AAh are the first and the second key whose disallow for accidental
writing to EEPROM to occur. These two values are written to EECON2 which serves only that
purpose, to receive these two values and thus prevent any accidental writing to EEPROM memory.
Program lines marked as 1, 2, 3, and 4 must be executed in that order in even time intervals.
Therefore, it is very important to turn off interrupts which could change the timing needed for
executing instructions. After writing, interrupts can be enabled again .

Example of the part of a program which writes data OxXEE to first location in EEPROM memory
could look something like the following:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_09Poglavlje.htm (2 of 3) [4/2/2003 16:18:00]

Chapter 2 - Microcontroller PIC16F84

et ITATUOZ, ERPO ;hankl, khecause EEADR is at 08h
mowlw Ox00 raddresz of location being
JWritten to
movwEf EELDE ;address being transferred to
;EELDR
mowlw OxEE ;write the walue 0OxEE
mowwt EEDATA rdata goe=s to EEDATLA register
bsf 3TATUZ, EREPO sBankl hecause EEADE i=s at 02h
beof INTCON, IE ;all interrupts are disabled
bhsf EECON1, WREN ;Writing enabled
mowlw 55h
1) mowvwt EECONZ ;first key 55h —-> EECONZ
21 mowlw Lih
3] mowvwE EECONZ ;second key LAk —-> EECON:Z
4] hsf EECONL1,WR ;sinitializes writing
bhef INTCON, GIE ;interrupts are enabled

It is recommended that WREN be turned off the whole time except when writing data to
EEPROM, so that possibility of accidental writing would be minimal.
All writing to EEPROM will automatically clear a location prior to writing a new!

}
Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/2_09Poglavlje.htm (3 of 3) [4/2/2003 16:18:00]

mailto:office@mikroelektronika.co.yu

Chapter 3 - Instruction Set

CHAPTER 3

Instruction Set

Introduction

Instruction set in PIC16Cxx microcontroller family
Data Transfer

Arithmetic and logic

Bit operations

Directing the program flow

Instruction execution period

Word list

We have already mentioned that microcontroller is not like any other integrated circuit. When they
come out of production most integrated circuits are ready to be built into devices which is not the
case with microcontrollers. In order to "make" microcontroller perform a task, we have to tell it
exactly what to do, or in other words we must write the program microcontroller will execute. We
will describe in this chapter instructions which make up the assembler, or lower-level program
language for PIC microcontrollers.

Complete set which includes 35 instructions is given in the following table. A reason for such a small
number of instructions lies primarily in the fact that we are talking about a RISC microcontroller
whose instructions are well optimized considering the speed of work, architectural simplicity and
code compactness. The only drawback is that programmer is expected to master "uncomfortable"
technique of using a reducedt set of 35 instructions.

Transfer of data in a microcontroller is done between work (W) register and an 'f' register that
represents any location in internal RAM (regardless whether those are special or general purpose
registers).

First three instructions (look at the following table) provide for a constant being written in W register
(MOVLW is short for MOVe Literal to W), and for data to be copied from W register onto RAM and
data from RAM to be copied onto W register (or on the same RAM location, at which point only the
status of Z flag changes). Instruction CLRF writes constant O in 'f ' register, and CLRW writes
constant O in register W. SWAPF instruction exchanges places of the 4-bit nibbles field inside a
register.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (1 of 4) [4/2/2003 16:18:03]

Chapter 3 - Instruction Set

Of all arithmetic operations, PIC like most microcontrollers supports only subtraction and addition.
Flags C, DC and Z are set depending on a result of addition or subtraction, but with one exception:
since subtraction is performed like addition of a negative value, C flag is inverse following a
subtraction. In other words, it is set if operation is possible, and reset if larger number was
subtracted from a smaller one.

Logic unit of PIC has capability of performing operations AND, OR, EX-OR, complementing (COMF)
and rotation (RLF and RRF).

Instructions which rotate the register contents move bits inside a register through flag C by one
space to the left (toward bit 7), or to the right (toward bit 0). Bit which "comes out" of a register is
written in flag C, and value of C flag is written in a bit on the "opposite side" of the register.

Instructions BCF and BSF do setting or cleaning of one bit anywhere in the memory. Even though
this seems like a simple operation, it is executed so that CPU first reads the whole byte, changes
one bit in it and then writes in the entire byte at the same place.

Instructions GOTO, CALL and RETURN are executed the same way as on all other microcontrollers,
only stack is independent of internal RAM and limited to eight levels.

'RETLW k' instruction is identical with RETURN instruction, except that before coming back from a
subprogram a constant defined by instruction operand is written in W register. This instruction
enables us to design easily the Look-up tables (lists). Mostly we use them by determining data
position on our table adding it to the address at which the table begins, and then we read data from
that location (which is usually found in program memory).

Table can be formed as a subprogram which consists of a series of 'RETLW k' instructions, where 'k’
constants are members of the table.

M ain molow 2
call Lookup
Lookup addwf PCL, T
retlw k
reth k1
retlhw k2

retlw ko

We write the position of a member of our table in W register, and using CALL instruction we call a
subprogram which creates the table. First subprogram line ADDWF PCL, f adds the position of a W
register member to the starting address of our table, found in PCL register, and so we get the real
data address in program memory. When returning from a subprogram we will have in W register the
contents of an addressed table member. In a previous example, constant 'k2' will be in W register
following a return from a subprogram.

RETFIE (RETurn From Interrupt - Interrupt Enable) is a return from interrupt routine and differs from
a RETURN only in that it automatically sets GIE (Global Interrupt Enable) bit. Upon an interrupt, this
bit is automatically cleared. As interrupt begins, only the value of program counter is put at the top
of a stack. No automatic storing of register values and status is provided.

Conditional jumps are synthesized into two instructions: BTFSC and BTFSS. Depending on a bit
status in 'f' register that is being tested, instructions skip or don't skip over the next program

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (2 of 4) [4/2/2003 16:18:03]

Chapter 3 - Instruction Set

instruction.

All instructions are executed in one cycle except for conditional branch instructions if condition was
true, or if the contents of program counter was changed by some instruction. In that case, execution
requires two instruction cycles, and the second cycle is executed as NOP (No Operation). Four
oscillator clocks make up one instruction cycle. If we are using an oscillator with 4MHz frequency,
the normal time for executing an instruction is 1 ps, and in case of conditional branching, execution
period is 2 ps.

any memory location in a microcontroller

work register

bit position in 'f' register

destination bit

label group of eight characters which marks the beginning of a part of the program
TOS top of stack

1 option

<> bit position inside register

Q.CTE""

MAne moric Dezcrption Operation Fleg | Cyclke | Motes

Data transfer

MOk Move constant 1o k=W 1

MOWVE f Mowve Wi W=t 1

M F f,d Mowe f f—=+d £ 1 1,2

CLRW - Clear W 0= T 1

CLRF f Clear f 0-—=f z 1 2

SWAPRF f d Sweap nikbles in f 7747, (300 -+ 300,074 1 1,2
Arritmetic and logic

ADDLW Kk Add constant and WY Wl W CDCE 1

ADCVWYF f d Ao W and f W+ = d CDCE 1 1,2

SUBLW k Subtract W from constant Wl =W CDc T 1

SLBEWF f.d Zubtract W from f W+ d C Dz 7 1 1.2

ARDLWY k AMD constant with W WAND k=W z 1

AMOAF f, d ARD Y weith WAND =4 il 1 1,2

DR f d DR wvith 1 WORLS+d z 1 1,2

MORLW k Exclusive OR constant with W WXORLE—= W a 1 1.2

N ORYE fd Exclusive OR W with WEORS>4 z 1

IMCF f.d IRcrement T frl =t Zz 1 1,2

DECF f, d Decrement f fi1=f i 1 1,2

RLF f,d FRotate Left f trough carry T EEEOEI T C 1 1.2

RRF f.d | Raotate Right f trough carry T EEERE LD C 1 12

COMF f, d Complement f f—=d Z 1 1,2
Bit operations

BCF f b Bit Clear f 0= 1k) 1.2

BSF f. b Bit Set f 1 =iy 1 1.2
Directing a program flow

BTF=C f. b Bit Test f, Skip if Clear jurngz it fib)=0 121 3

BTF== f. b Bit Test f, Skip if Set jurng it fik)=1 121 3

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (3 of 4) [4/2/2003 16:18:03]

Chapter 3 - Instruction Set

Directing a program flow
BTFSC f b Bit Test f, Skip if Clear jurng it fk)=0 1021 3
BTF== f. b Bit Test f, Skip if Set jurng it fh0=1 1021 3
DECF=Z 1, d Decrement 1, Skip it 0 f-1 =+ 4, jump if £=1 1(2) 123
IMCFSE f,d |Increment £, Skipif 0 f+1 = 4, ump #E=0 102 123
0T k Goto address WOAND k=W o
CALL k Call subrouting WAND f—d 2
RETURM - Return fram Subroutine WORk =W 2
RETLWY k Feturn with constart in W WORS=+d 2
RETFIE - Feturn fram interrupt WEOR k=W 2

Other instructions
MR - Mo Operation 1
CLEWDT - Clear Watchdog Timer 0=WDT,=»Tol-=+PD TGO FD 1
SLEEP - Gointo standby mode 0—=+WLT, I=TOo0—=+PD TO ,PD 1

*1 If 1/0 port is source operand, status on microcontroller pins is read

*2 If this instruction is executed on TMR register and if d=1, prescaler assigned to that timer will
automatically be cleared
*3 If PC was modified, or test result =1, instruction was executed in two cycles.

Previous page Table of contents “hapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/3_Poglavlje.htm (4 of 4) [4/2/2003 16:18:03]

mailto:office@mikroelektronika.co.yu

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

CHAPTER 4

Assembly Language Programming

Introduction

An example writting program

Control directives

« 4.1 define

« 4.2 include
« 4.3 constant
« 4.4 variable
« 4.5 set

« 4.6 equ

. 4.7 org
« 4.8 end

Conditional instructions

« 4.9if

« 4.10 else
« 4.11 endif
o 4.12 while
« 4.13 endw
o 4.14 ifdef
o 4.15 ifndef

Data directives

o 4.16 cblock
« 4.17 endc
. 4.18 db

« 4.19 de

« 4.20 dt

Configurating a directive

« 4.21 CONFIG
« 4.22 Processor

Assembler arithmetic operators

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (1 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

Files created as a result of program translation
Macros

The ability to communicate is of great importance in any field. However, it is only possible if both
communication partners know the same language, i.e follow the same rules during
communication. Using these principles as a starting point, we can also define communication that
occurs between microcontrollers and man . Language that microcontroller and man use to
communicate is called "assembly language". The title itself has no deeper meaning, and is
analogue to names of other languages , ex. English or French. More precisely, "assembly
language" is just a passing solution. Programs written in assembly language must be translated
into a "language of zeros and ones" in order for a microcontroller to understand it. "Assembly
language” and "assembler” are two different notions. The first represents a set of rules used in
writing a program for a microcontroller, and the other is a program on the personal computer
which translates assembly language into a language of zeros and ones. A program that is
translated into "zeros™ and "ones" is also called "machine language".

1 Srf 12
Roz Rad :I
L
RA2 R[]
1c
RhT ok Qs :l
1<
MCLR QECE
Program.asm| |[Translatory [Program.bes|| Pragrammer PIC :1|4
wss JRFHd vdd[]
1
N REOANT rer[]
1z
RE1 RE& :l
11
REZ RE3 :l
1c-
RE3 Re4[]

Man

The process of communication between a man and a microcontoller

Physically, "Program" represents a file on the computer disc (or in the memory if it is read in a
microcontroller), and is written according to the rules of assembler or some other language for
microcontroller programming. Man can understand assembler language as it consists of alphabet
signs and words. When writing a program, certain rules must be followed in order to reach a
desired effect. A Translator interprets each instruction written in assembly language as a series
of zeros and ones which have a meaning for the internal logic of the microcontroller.

Lets take for instance the instruction "RETURN" that a microcontroller uses to return from a sub-
program.

When the assembler translates it, we get a 14-bit series of zeros and ones which the
microcontroller knows how to interpret.

Example: RETURN 00 0000 0000 1000

Similar to the above instance, each assembler instruction is interpreted as corresponding to a
series of zeros and ones.

The place where this translation of assembly language is found, is called an "execution” file. We
will often meet the name "HEX" file. This name comes from a hexadecimal representation of that
file, as well as from the suffix "hex" in the title, ex. "test.hex". Once it is generated, the execution
file is read in a microcontroller through a programmer.

An Assembly Language program is written in a program for text processing (editor) and is

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (2 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

capable of producing an ASCII file on the computer disc or in specialized surroundings such as
MPLAB - to be explained in the next chapter.

Assembly language

Basic elements of assembly language are:

. Labels

. Instructions
. Operands
. Directives
. Comments

Labels

A Label is a textual designation (generally an easy-to-read word) for a line in a program, or
section of a program where the micro can jump to - or even the beginning of set of lines of a
program. It can also be used to execute program branching (such as Goto) and the program
can even have a condition that must be met for the Goto instruction to be executed. It is
important for a label to start with a letter of the alphabet or with an underline "_". The length of
the label can be up to 32 characters. It is also important that a label starts in the first clumn.

first column J f

Correctly written labels

Start
_end
P123
Is_it_bigger?

Incorrectly written labels

Start - does nat begin in first column
2_end - beginz with & numker!

Instructions

Instructions are already defined by the use of a specific microcontroller, so it only remains for us
to follow the instructions for their use in assembly language. The way we write an instruction is
also called instruction "syntax". In the following example, we can recognize a mistake in writing
because instructions movilp and gotto do not exist for the PIC16F84 microcontroller.

Correctly written instructions

oy | H'O1FF
goto Start

Incorrectly written instructions

mowlp H'O1FF
gotto Start

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (3 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

Operands

Operands are the instruction elements for the instruction is being executed. They are usually
registers or variables or constants.

Typical operands

moviw HFF %
movwi LEVEL

Cperand as a

variable LEWEL in Operand as a
the memary of a hexadecimal
microcantraller number

Comments

Comment is a series of words that a programmer writes to make the program more clear and

legible. It is placed after an instruction, and must start with a semicolon ";".

Directives

A directive is similar to an instruction, but unlike an instruction it is independent on the
microcontroller model, and represents a characteristic of the assembly language itself. Directives
are usually given purposeful meanings via variables or registers. For example, LEVEL can be a
designation for a variable in RAM memory at address ODh. In this way, the variable at that
address can be accessed via LEVEL designation. This is far easier for a programmer to understand
than for him to try to remember address ODh contains information about LEVEL.

Some frequently used directives:

PROCESSOR 16F84
#include "p16f@d.inc™

_CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & _XT_0O5C

The following example illustrates a simple program written in assembly language respecting the
basic rules.

When writing a program, beside mandatory rules, there are also some rules that are not written
down but need to be followed. One of them is to write the name of the program at the beginning,
what the program does, its version, date when it was written, type of microcontroller it was
written for, and the programmer’'s name.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (4 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

infnr?wi!aﬁ:in:un 1 Prograrm for initialization of port B and setting pins to status of logic one
on the W™ Wersion 1.0 Date: 10,10.1999, MCU:PIC16F34 Written by: John Smith
program
; Declaration and configuration of a processor
PROCESSOR 16F84
#include “p16f84.inc™ ; Processor title
Directive w» — CONFIG _CP_OFF & WDT_OFF & PWRTE_ON & _XT_05C
; Start of program
org I]H[_Il] ; Reset wector
goto Main 1 Goto the beginning of Main
; Interrupt vector
Inclusion of org 0x04 ; Interrupt wector
& rmacro goto Main ; Interrupt routine doesn't exist
#include “bank.inc”
Comment ; Beqginning of the main program
Main
J BANMK1 ; Select memory bank 1
Label #———— moviw 0x00 _
Instruction & movwf TRISB ; Port B pins are output
BANKO v Select memory banlk 0
Operand e |
moviw 0=FF
mownf PORTB ; et all ones to port B
Loop goto Loop s Program remains in the loop
end ; Mecessary marking the end of a program

Since this data isn't important for the assembly translator, it is written as comments. It should be
noted that a comment always begins with a semicolon and it can be placed in a new row or it can
follow an instruction.

After the opening comment has been written, the directive must be included. This is shown in the
example above.

In order to function properly, we must define several microcontroller parameters such as: - type
of oscillator,

- whether watchdog timer is turned on, and

- whether internal reset circuit is enabled.

All this is defined by the following directive:

_CONFI G _CP_OFF& DT _OFF&PWRTE_ON&XT_OSC

When all the needed elements have been defined, we can start writing a program.

First, it is necessary to determine an address from which the microcontroller starts, following a
power supply start-up. This is (org 0x00).

The address from which the program starts if an interrupt occurs is (org 0x04).

Since this is a simple program, it will be enough to direct the microcontroller to the beginning of a
program with a "goto Main" instruction.

The instructions found in the Main select memory bankl (BANK1) in order to access TRISB
register, so that port B can be declared as an output (moviw 0x00, movwf TRISB).

The next step is to select memory bank 0 and place status of logic one on port B (moviw OxFF,
movwf PORTB), and thus the main program is finished.
We need to make another loop where the micro will be held so it doesn't "wander" if an error

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (5 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

occurs. For that purpose, one infinite loop is made where the micro is retained while power is
connected. The necessary "end" at the end of each program informs the assembly translator that
no more instructions are in the program.

4.1 #DEFINE Exchanges one part of text for another

Syntax:
#define<text> [<another text>]

Description:
Each time <text> appears in the program , it will be exchanged for <another text >.

Example:

#define turned_on 1
#define turned_of f 0

Similar directives: #UNDEFINE, IFDEF,IFNDEF

4.2 INCLUDE Include an additional file in a program

Syntax:
#include <file_name=>
#include "file_name"

Description:

An application of this directive has the effect as though the entire file was copied to a place where
the "include" directive was found. If the file name is in the square brackets, we are dealing with a
system file, and if it is inside quotation marks, we are dealing with a user file. The directive
"include" contributes to a better layout of the main program.

Example:

#i ncl ude <regs. h>
#i ncl ude "subprog. asnt

4.3 CONSTANT Gives a constant numeric value to the textual
designation

Syntax:
Constant <name>=<value>

Description:
Each time that <name> appears in program, it will be replaced with <value=>.

Example:

Const ant MAXI MUM=100
Const ant Lengt h=30

Similar directives: SET, VARIABLE

4.4 VARIABLE Gives a variable numeric value to textual
designation

Syntax:
Variable<name>=<value>

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (6 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

Description:

By using this directive, textual designation changes with particular value.

It differs from CONSTANT directive in that after applying the directive, the value of textual
designation can be changed.

Example:
vari abl e | evel =20

vari abl e tinme=13

Similar directives: SET, CONSTANT

4.5 SET Defining assembler variable

Syntax:
<name_variable>set<value>

Description:
To the variable <name_variable> is added expression <value>. SET directive is similar to EQU,
but with SET directive name of the variable can be redefined following a definition.

Example:
| evel set O

I ength set 12
| evel set 45

Similar directives: EQU, VARIABLE

4.6 EQU Defining assembler constant

Syntax:
<name_constant> equ <value>

Description:
To the name of a constant <name_constant> is added value <value>

Example:
five equ 5

six equ 6
seven equ 7

Similar instructions: SET

4.7 ORG Defines an address from which the program is stored
in microcontroller memory

Syntax:
<label>org<value>

Description:
This is the most frequently used directive. With the help of this directive we define where some
part of a program will be start in the program memory.

Example:
Start org 0x00

movl w OxFF
nmovwf PORTB

The first two instructions following the first 'org" directive are stored from address 00, and the
other two from address 10.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (7 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

4.8 END End of program

Syntax:
end

Description:
At the end of each program it is necessary to place '‘end' directive so that assembly translator
would know that there are no more instructions in the program.

Example:

movl w OxFF
movwf PORTB
end

4.9 IF Conditional program branching

Syntax:
if<conditional_term=>

Description:
If condition in <conditional_term> was met, part of the program which follows IF directive would
be executed. And if it wasn't, then the part following ELSE or ENDIF directive would be executed.

Example:
if level =100

goto FILL

el se

got o DI SCHARGE
endi f

Similar directives: #ELSE, ENDIF

4.10 ELSE The alternative to 'IF' program block with
conditional terms

Syntax:
Else

Description:
Used with IF directive as an alternative if conditional term is incorrect.

Example:
If time< 50
goto SPEED UP

el se goto SLOW DOMN
endi f

Similar instructions: ENDIF, IF

4.11 ENDIF End of conditional program section

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (8 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

Syntax:
endif

Description:
Directive is written at the end of a conditional block to inform the assembly translator that it is
the end of the conditional block

Example:
If [evel =100

got o LOADS
el se

got o UNLOADS
endi f

Similar directives: ELSE, IF

4.12 WHILE Execution of program section as long as
condition is met

Syntax:
while<condition>

endw

Description:

Program lines between WHILE and ENDW would be executed as long as condition was met. If a
condition stopped being valid, program would continue executing instructions following ENDW line.
Number of instructions between WHILE and ENDW can be 100 at the most, and number of
executions 256.

Example:
Wil e i <10

i=i+1
endw

4.13 ENDW End of conditional part of the program

Syntax:
endw

Description:
Instruction is written at the end of the conditional WHILE block, so that assembly translator would
know that it is the end of the conditional block

Example:
whil e i<10
i=i+1
endw

Similar directives: WHILE

4.14 |FDEF Execution of a part of the program if symbol
was defined

Syntax:
ifdef<designation>

Description:
If designation <designation> was previously defined (most commonly by #DEFINE instruction),
instructions which follow would be executed until ELSE or ENDIF directives are not would be

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (9 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

reached.

Example:
#defi ne test

i fdef test ;how the test was defined
...... instructions fromthese |lines woul d execute

Similar directives: #DEFINE, ELSE, ENDIF, IFNDEF, #UNDEFINE

4.15 IFNDEF Execution of a part of the program if symbol
was defined

Syntax:
ifndef<designation>

Description:

If designation <designation> was not previously defined, or if its definition was erased with
directive #UNDEFINE, instructions which follow would be executed until ELSE or ENDIF directives
would be reached.

Example:
#defi ne test

i fndef test ;how the test was undefined
..... .; instructions fromthese |lines woul d execute

Similar directives: #DEFINE, ELSE, ENDIF, IFDEF, #UNDEFINE

4.16 CBLOCK Defining a block for the named constants

Syntax:
Cblock [<term=>]

<label>[:<increment>], <label>[:<increment>]......
endc

Description:

Directive is used to give values to named constants. Each following term receives a value greater
by one than its precursor. If <increment> parameter is also given, then value given in
<increment> parameter is added to the following constant.

Value of <term> parameter is the starting value. If it is not given, it is considered to be zero.

Example:

Cbl ock 0x02

First, second, third ;first=0x02, second=0x03, third=0x04

endc

cbl ock 0x02

first : 4, second : 2, third ;first=0x06, second=0x08, third=0x09
endc

Similar directives: ENDC

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (10 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

4.17 ENDC End of constant block definition

Syntax:
endc

Description:
Directive was used at the end of a definition of a block of constants so assembly translator could
know that there are no more constants.

Similar directives: CBLOCK

4.18 DB Defining one byte data
Syntax:
[<label=]db <term> [, <term=>,..... ,<term>]

Description:
Directive reserves a byte in program memory. When there are more terms which need to be
assigned a byte each, they will be assigned one after another.

Example:
db 't*, OxOf, 'e', 's', 0x12

Similar instructions: DE, DT

4.19 DE Defining the EEPROM memory byte
Syntax:
[<term>] de <term> [, <term=>,..... , <term=]

Description:
Directive is used for defining EEPROM memory byte. Even though it was first intended only for
EEPROM memory, it could be used for any other location in any memory.

Example:

org H 2100
de "Version 1.0" , O

Similar instructions: DB, DT

4.20 DT Defining the data table
Syntax:
[<label>] dt <term> [, <term=>,......... , <term=>]

Description:
Directive generates RETLW series of instructions, one instruction per each term.

Example:
dt "Message", O
dt first, second, third

Similar directives: DB, DE

4.21 CONFIG Setting the configurational bits

Syntax:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (11 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm
___config<term> or_ _config<address>,<term=>

Description:
Oscillator, watchdog timer application and internal reset circuit are defined. Before using this
directive, the processor must be defined using PROCESSOR directive.

Example:
_CONFI G _CP_OFF& VWDT_OFF& PWRTE_ON&_XT_OSC

Similar directives: IDLOCS, PROCESSOR

4.22 PROCESSOR Defining microcontroller model

Syntax:
Processor <microcontroller_type=>

Description:
Instruction sets the type of microcontroller where programming is done.

Example:
processor 16F84

Operator Description Example

Operator Description Example

% Current status of pragram counter goto § +3

{ Left bracket 1+(d*4)

) Right bracket { Length + 1 3 * 256

! ME (logic complement) if!{a-b

- Complement flags = -flags

- Megation (second complement) -1 * Length

high Returns higher byte movlw high CTR_Table

low Feturns lower byte fmovlw low CTR_Table

* Multiplying a=hb*c

Fi subdividing a=hb/c

00 subdividing by module entry_len = tot_len % 16

+ Addition tot_len = entry_len * 8 + 1
- =ubtraction entry_len = { tot-13/8
< Moving to the left val = flags << 1

= Mowing to the right val = flags == 1

== Higher than, ar equal If entry_idx == num_entries
= Higher than iIf entry_idx = num_entries
< Lesser than if entry_ids < num_entries
<= Lesserthan, or equal If entry_idx <= num_entries
== Equal if entry_idx == num_entries
1= Mot equal if entry_id= = num_entries
(LY Cperation AMD on bits flags = flags & ERROFR_BIT
- Exclusive OR on hits flags = flags ~ ERROR_BIT
| Lagic OR an hits flags = flags | ERROR_BIT
AR I rontir AN if flen == B12% BR (h == m

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (12 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

~ Exclusive OR on hits flags = flags -~ ERROR_BIT
| Lagic OF an hits flags = flags | ERROR_BIT
B B Lagic AND if {len == 512} && (b ==)
1 Logic OR if (len == 512% || (b ==)
= Equal entry_index = 0
+ = Add and assign entry_index += 1
-= =ubtract and assign entry_index -= 1
= Multiply and assign entry_index *= entry_length
= Divide and assign entry_total /= entry_length
= Divide at module and assign entry_index %= 8
== Move to the left and assign flags <==13
=== fove to the right and assign flags ===13
&= Logic AMD and assign flags &=EERRCE_FLAG
= Logic OR on bits and assign flags = EEROR_FLAG
A= Exclusive OR on hits and assig flage"=EEREOE _FLAG
++ Incrernent by one 1+
- - Decrease by one 1 --

As a result of the process of translating a program written in assembler language we get files like:

. Executing file (Program_Name.HEX)
. Program errors file (Program_Name.ERR)
. List file (Program_Name.LST)

The first file contains translated program which was read in microcontroller by programming. Its
contents can not give any information to programmer, so it will not be considered any further.
The second file contains possible errors that were made in the process of writing, and which were
noticed by assembly translator during translation process. Errors can be discovered in a "list" file
as well. This file is more suitable though when program is big and viewing the ‘list' file takes
longer.

The third file is the most useful to programmer. Much information is contained in it, like
information about positioning instructions and variables in memory, or error signalization.

Example of 'list' file for the program in this chapter follows. At the top of each page is stated
information about the file name, date when it was translated, and page number. First column
contains an address in program memory where a instruction from that row is placed. Second
column contains a value of any variable defined by one of the directives : SET, EQU, VARIABLE,
CONSTANT or CBLOCK. Third column is reserved for the form of a translated instruction which PIC
is executing. The fourth column contains assembler instructions and programmer's comments.
Possible errors will appear between rows following a line in which the error occured.

||
H Makro: FProba.lst [
MPASH 0Z.40Released PROBA . ASM 4-zZo-z0o00 F-1e:-17 PALCE 1
LOC O0OBJECT CODE LINE S0URCE TEXT
WALITE

ooaol sProgram for initialization of port B and setbing its pins
ooaog ;£o the state of logic onhe

ooz ;Version: 1.0 Dace: 10,05 2000, MCUT: PIC1EFS4 Tritten
Qo004 ;by: Petar Petrowic
Qo005

ooaos ;Declaration and configquration of the processor

I talalaial TTAATAMAAT 1 ST S A

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (13 of 15) [4/2/2003 16:18:10]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

oooo4 ;by: Petar Petrowic

oooos

ooaoe ;sheclaration and configquration of the processor

Qoooo7? PROCESS0R 1eFSd

oooog #include "plefS4.irnc" ;Processor title

ooool LIST

aoang ;P1EFE4 THC Standard Header File, Wersion Z.00 Microchip
;Technology, Inc.

oo0l3e LIAT

oooos
Z007 3FFl ooolo CONFIG _EP OFF & WDT_OFF & _PWRTE ON & _=XT 02C
oooll
oaaoc Qo00lZ COMNSTAMT BASE = 0Ox0c
Qo013
oool4 ;Start of a program
aoan ooalLE org Ox00 ;sBeset wector
Qooo ze0k ooole goto Main ;G0 Lo the beginning of the main program
Qo017
oools ;sInterrapt wector
aoo4 oooars oro Ox04 sIntermnpt wecktor
aoo4 220k ooozo gqoto Main rInterrnpt roucine does not exist
Qoo 1
0OozZ ;Begimning of the main program
o002 #include "Barnlz. ine" ; File with macros
|:||:||:||:|l ;'.I.".t".l.'******t*t*1'1.'1".!.".!.".!.".!.'*t********1.'1.'1.".!.'1.".!.".!.'*t****t*********t***t**
ooooz Makros BAMNEO and BANKEL
|:||:||:||:|3 ;'.I.".!.".I.'1.".!.'*1‘*1‘****1.'1.'1.".!".!.'1.".!.'*t****t***1.'1.'1.".!.'1.'1".!.'*t****t*********t*******
Qoo
oooo 0010 ooooE T _Temp set EASE+4
oaao 0o0ll o0o0e Stat Temp Set BASE+E
oaao 00lz 00007 Option Temp Set BASE+S
oooos
oooos
o0old EBANEO macro
oooll ket ATATUE BPO ; Select memory hank 0O
o00lz: endm
Qo013
oool4 EBAMEL bITF=Tud afu]
ooolE bst STATOS BPO ; Select memory bank 1
ooole endm
Qo017
oaos oo00z4 Main
ooo0zE BAMEL ; Select memory bank 1
aook 1e83 bl b=t STATOS BPO ; Select memory bank 1

ooos& =000 O00zZ& mowlwr oz00
Message [30Z2]: PBegister in operand not in bank 0. Ensure that bank bits are

Correct.

oo O0ge 0o0z7 wovwf TRIBE JsPort B pins are output
ooozs
aoozs BANED ;Gelect memory bank 0O

ooos 1283 M bef STATUS, BPO ;Belact memory bank 0

ooos 30FF 00030 mwmovlw OxFF

Oo0a O0ge 00031l weovwf PORTE ;Bet all ones to port B
o003z

Oooe Z20E nln]peici Loop goto Loop ; Program stays in the loop
00034
Qo035 EMNL ;Meces=sary marking the end of a program

MEMOERY TSAGE MAP ('K' = Used, = = Trased)

0000 : X-——0000000K-—-= ——=———mm o mmmmm e e
2000 1 —-———m= e e e e

211 other memory blocks wpmsed.

Program Mewory Words Used: 2
Program Mewory Words Free: 101k
Errors: 0

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (14 of 15) [4/2/2003 16:18:11]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/4_Poglavlje.htm

ILUHJ.ﬂ.I.I.I. J.J.:J.I.I.UJ._lll LLUL SN By S) [N 1§ N -

Program Mewmory Words Free: 101k

Errors: 0

Marnings: 0 reportced, 0 swppressed
Messages: 1 reported, 0 swppressed

At the end of the "list" file there is a table of symbols used in a program. Useful element of 'list’'
file is a graph of memory utilization. At the very end, there is an error statistic as well as the
amount of remaining program memory.

Macros are a very useful element in assembly language. They could briefly be described as "user
defined group of instructions which will enter assembler program where macro was called”. It is
possible to write a program even without using macros. But with their use written program is
much more readable, especially if more programmers are working on the same program together.
Macros have the same purpose as functions of higher program languages.

How to write them:

<label> macro [<argumentl>,<argument2>,...... <argumentN=>]

From the way they were written, we could be seen that macros can accept arguments, too which
is also very useful in programming. Whenever argument appears in the body of a macro, it will be
replaced with the <argumentN=> value.

Example:
MA FORTE macro ARGl
BAMKD iSelect memory bank O
movlw ARG1 Malue from ARGL argurent
s stored in working reqister
mowwf PORTE svalue from ARG1
; argurment placed on port B
endm imacro ended

The above example shows a macro whose purpose is to place on port B the ARG1 argument that
was defined while macro was called. Its use in the program would be limited to writing one line:
ON_PORTB OxFF , and thus we would place value OxFF on PORTB. In order to use a macro in the
program, it is necessary to include macro file in the main program with instruction include
"macro_name.inc". Contents of a macro is automatically copied onto a place where this instruction
was written. This can be best seen in a previous list file where file with macros "bank.inc" was
copied below the line #include"bank.inc"

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm (15 of 15) [4/2/2003 16:18:11]

mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

CHAPTER 5
MPLAB

Introduction

5.1 Installing the MPLAB program package
5.2 Introduction to MPLAB

5.3 Choosing the development mode

5.4 Designing a project

5.5 Designing new assembler file

5.6 Writing a program

5.7 MPSIM simulator

5.8 Toolbar

MPLAB is a Windows program package that makes writing and developing a program easier. It
could best be described as developing environment for some standard program language that is
intended for programming a PC computer. Some operations which were done from the instruction
line with a large number of parameters until the discovery of IDE "Integrated Development
Environment"” are now made easier by using the MPLAB. Still, our tastes differ, so even today
some programmers prefer the standard editors and compilers from instruction line. In any case,
the written program is legible, and well documented help is also available.

g,

; : T -_ G Frizht Micrechip, ef'hwhzf'm;t.

— a. — - r=r

MPLAB consists of several parts:

- Grouping the projects files into one project (Project Manager)

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (1 of 10) [4/2/2003 16:18:18]

Chapter 5 - MPLAB

- Generating and processing a program (Text Editor)
- Simulator of the written program used for simulating program function on the microcontroller.

Besides these, there are support systems for Microchip products such as PICStart Plus and ICD (In
Circuit Debugger). As this book does not cover these , they will be mentioned only as options.

Minimal computer requirements for staring the MPLAB are:

- PC compatible computer 486 or higher

- Microsoft Windows 3.1x or Windows 95 and new versions of the Windows operating system
- VGA graphic card

- 8MB memory (32MB recommended)

- 20MB space on hard disc

- Mouse

In order to start the MPLAB we need to install it first. Installing is a process of copying MPLAB files
from the CD onto a hard disc of your computer. There is an option on each new window which
helps you return to a previous one, so errors should not present a problem or become a stressful
experience. Installment itself works much the same as installment of most Windows programs.
First you get the Welcome screen, then you can choose the options followed by installment itself,
and, at the end, you get the message which says your installed program is ready to start.

Steps for installing MPLAB:

. Start-up the Microsoft Windows

. Put the Microchip CD disc into CD ROM

. Click on START in the bottom left corner of the screen and choose the RUN option
. Click on BROWSE and select CD ROM drive of your computer.

. Find directory called MPLAB on your CD ROM

. Click on SETUP.EXE and then on OK .

. Click again on OK in your RUN window

NO O~ WNPR

Installing begins after these seven steps. The following pictures explain the meaning of certain
installment steps.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (2 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

2E MPLAT 500000 |nateflation

WMLAE w5.00. 00 Inslallslion

Belcome!

Thiz iet et prige amwill ivitall the HFLAR «S00000

Preas dhe Mest budion b shat B insdadsfon v'ou canpisrs
B CancllElin e F penn s ol wled [120l Do MPLAE
I A ot iy b

Welcome screen at the beginning of MPLAB installment

At the very beginning, it is necessary to select those MPLAB components we will be working with
Since we don't have any original Microchip hardware components such as programmers or
emulators, we will only install MPLAB environment, Assembler, Simulator and the instructions.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (3 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

MPLAE v5 00.00 Installation
Select Components
Choogze which components to install by checking the bores
belonwy.
W MPLAE IDE Files 2532 k
¥ tMPaSHMPLINEMPLIE Files 7321k
W MPLAB-SIM Simulator Support Files 4886 k
[~ MPLAE-ICE Emulator Support Files J623 k.
[~ PICMASTER Emulator Support Files 1198 k
[~ PRO MATE Support Files h0a k
[T PICSTART Pluz Suppoart Files 1657 k
[T #MPLAB-ICD Debugger Support Files 245k
W Help Files 5134 k
Dizgk Space Required: 19873 k
Dizgk Space Remaining: 2074447 k.
¢ Back Mewut > Cancel

Selecting components of MPLAB developing environment

As it is assumed you will work in Windows 95 (or a newer operating system), everything in
connection with DOS operating system has been taken out during selection of assembler
language. However, if you still wish to work in DOS, you need to deselect all options connected
with Windows, and choose the components appropriate for DOS.

MPLAE v5. 00.00 Installation

Select Language Components

Chooze which components ta inztall by checking the boxes
belowy.

W MPASK for Windows g4 k
[MP&5H for DOS 579 k
V¥ MP&5M Header Files, Samples, and Templates 1999 k

¥ MPLINEAMPLIE for wWindows35 1586 k
™ MPLIMEAMPLIE for \Windows 3.1/D05 2150 k.
W Processor Linker Scripts 173 k
Diizk Space Reguired: 17144 |k
Dizgk Space Remaining: 2077170 k

¢ Back Cancel

Selecting the assembler and the operating system

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (4 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

Like any other program, MPLAB should be installed into some directory. This option could be
moved into any directory on any hard disc of your computer. If you didn't have a more pressing

need, it should be left at selected place.

MPLAB v¥5_00.00 Installation Ed

Select Destination Directory

Fleaze zelect the directon where the MPLAB +5.00.00 files are
to be ingtalled.

C:%\Program Files\MFPLAR Browse |

< Back

Cancel |

Choosing the directory where MPLAB will be installed

Users who have already had MPLAB (older version than this one) need the following option.
The purpose of this option is to save copies of all files which will be modified during a changeover
to a new MPLAB version. In our case we should leave selected NO because of presumption that

this is your first installment of MPLAB on your computer.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (5 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

MPLAE v5 00.00 Installation

Backup Replaced Files?

T hiz inztallation program can create backup copies of all files
replaced during the installation. Do you want bo create
backups of the replaced files?

¢ Back Mewut > Cancel

Option for users who are installing a new version over an already installed MPLAB

Start menu is a group of program pointers, and is selected by clicking on START option in the

lower left corner of the screen. Since MPLAB will be started from here, we need to leave this
option as it is.

MPLAE v5. 00.00 Installation

Add to Start Menu?

Do pou want to create shortcuts to access the installed files?y

* es
Mo

¢ Back

Adding the MPLAB to the start menu

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (6 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

Location that will be mentioned from here on, has to do with a part of MPLAB whose explanation
we don't need to get into. By selecting a special directory , MPLAB will keep all files in connection
with the linker in a separate directory.

Linker Scripts Ed

Linker script Location

Due to the expanded number of linker zcripts you may
now intall them in their awin sub directary. Users with
previous projects may prefer to keep them in the MPLAR
directary for compatibility with exizting projects [default].
[f you are a new user you mag wish to keep these in the
YWLER zub directary.

™ |natall filez to MPLAE install directaory

* |nstall files to MPLAESLEr sub direchong

< Back Hest = Cancel

Determining a directory for linker files

Every Windows program has system files usually stored in a directory containing Windows
program. After a number of different installments, the Windows directory becomes overcrowded
and too big. Thus, some programs allow for their system files to be kept in same directories with
programs. MPLAB is an example of such program, and the bottom option should be selected.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (7 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

Select System Files

Select System Files

YWiould pau like to install spstern DLL files to your
WafindowshSye directomn? IF pou are running MPLAE
inztalled on a commaon network, you may not be
allovwed bo wrike files to this directony. |F you da not
inztall them in the SafindowshSes directary, they will
be put in the zame directary az MPLAB.

™ |nstall files to NwWindows\Sys

% |nstall files bo MPLAE install direchany

Mewut > Cancel

Selecting a directory for system files

After all of the above steps, installment begins by clicking on '‘Next'.

MPLAEB 5 00.00 Installation

Ready to Install!

'au are now ready o ingtall the MPLAE +5.00.00.

Frezs the Hext buttan to begin the inztallation ar the Back
buttar to reenter the installation infarmation.

< Back

Cancel |

Screen prior to installment

Installment doesn't take long, and the process of copying the files can be viewed on a small

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (8 of 10) [4/2/2003 16:18:18]

Chapter 5 - MPLAB

window in the right corner of the screen.

Debugging Options have bean Consofidalted!

[revelopmend Mode Condorare the ostun

_ﬂ: ST, Irfam B
Conhigurslicn 1 Powenr "l igak Dpticne | s ey
Tools 1 Paite ‘l M e i

| 1.} e e
Piscerzor | 160568, PLMIENAD o sbedtd proCREho
S HPLAR-S1KE Simul r [T troen o ool

S Smulatee | gy i el
4+ MWPMLAR:ICE Emulaioe {Canno! race oo hreak on dala

| | - .
Click Totails” dor sdditional £
 FICMASTER Emwdstor | lisiloimatize on PIC1 B8, gl

 ICEPIC melected dovice
 HPLAR-CD 1 ehingepes

Inguze | Relails... I

[ok | cacel | ppe |

|rick Lasd iy

Copynaiffe
C/\Paogran FaeMPLAEAPTECTAIND

Installment flow

After installment have been completed, there are two dialog screens, one for the last minute

information regarding program versions and corrections, and the other is a welcome screen. If
text files (Readme.txt) have opened, they would need to be closed.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (9 of 10) [4/2/2003 16:18:18]

Chapter 5- MPLAB

MPLAE +5_00.00 Installation

View README Files?

E ach inztalled component of MPLAB has an azsociated
RE&DME file that contains impartant information, such as
device support and knaown izsues.

YWhould vou like ta view theze files now?

o es
Mo

Please review these files before contacting
Customer Support.

Cancel |

Last minute information regarding program versions and corrections.

By clicking on Finish, installment of MPLAB is finished.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/5_01Poglavlje.htm (10 of 10) [4/2/2003 16:18:18]

mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

5.2 MPLAB

Following the installment procedure, you will get a screen of the program itself. As you can see,
MPLAB looks like most of the Windows programs. Near working area there is a "menu” (upper blue
colored area with options File, Edit..etc.), "toolbar" (an area with illustrations the size of small
squares), and status line on the bottom of the window. There is a rule in Windows of taking some
of the most frequently used program options and placing them below the menu, too. Thus we can
access them easier and speed up the work. In other words, what you have in the toolbar you also
have in the menu.

=TMPLAD
Fie Promct Edt Debug Opiore Toch Windew Help

[=] (=)=] [£]%]@ @] [B el EFEEE) (1)

N N I |FCIEREE el w0 - zdsc 8k On[EO [MBz |Ussr

The screen after starting the MPLAB

The purpose of this chapter is for you to become familiar with MPLAB developing environment and
with basic elements of MPLAB such as:

Choosing a developing mode

Designing a project

Designing a file for the original program

Writing an elementary program in assembler program language
Translating a program into executive code

Starting the program

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_02Poglavlje.htm (1 of 2) [4/2/2003 16:18:20]

Chapter 5- MPLAB
Opening a new window for a simulator
Opening a new window for variables whose values we watch (Watch Window)
Saving a window with variables whose values we are watching
Setting the break points in a simulator (Break point)

Preparing a program to be read in a microcontroller can boil down to several basic steps:

Table of contents Chapter overview Next page

© Copyright 1999. mikroaektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_02Poglavlje.htm (2 of 2) [4/2/2003 16:18:20]

mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

Table of contents Chapter overview Next page

Setting a developing mode is necessary so that MPLAB can know what tools will be used to
execute the written program. In our case, we need to set up the simulator as a tool that's being
used. By clicking on OPTIONS---> DEVELOPMENT MODE, a new window will appear as in the
picture below:

Development Mode
Configuration] Power] Pins] Break Options 3
i Tools 'l Ports] Clock] Memory 3

“#+ Mone [Editor Only) Processor: | PIC16F34 hd
* MPLAB-SIM Simulator :I
o BEFH AR OE Babator

O ll
B MPLARADD Debusoes

Inguime [Metails. .

(1] 4 Cancel Apply | Help |

Setting a developing mode

We should select the 'MPLAB-SIM Simulator’ option because that is where the program will be
tried out. Beside this option, the 'Editor Only' option is also available. This option is used only if we
want to write a program and by programmer write' hex file' in a microcontroller. Selection of the
microcontroller model is done on the right hand side. Since this book is based on the PIC16F84,
this model should be selected.

Usually when we start working with microcontrollers, we use a simulator. As the level of
knowledge will have increased, program will be written in a microcontroller right after translation.
Our advice is that you always use the simulator. Though program will seem to develop slower, it
will pay off in the end.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_03Poglavlje.htm [4/2/2003 16:18:21]

mailto:office@mikroelektronika.co.yu

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/5_04Poglavlje.htm

Table of contents Chapter overview Next page

In order to start writing a program you need to create a project first. By clicking on PROJECT -->
NEW PROJECT you are able to name your project and store it in a directory of your choice. In the
picture below, a project named ‘'test.pjt’ is being created and stored in c:\PIC\PROJEKTS\
directory.

This directory is chosen because authors had such directory set up of on their computer. Generally
speaking, directory with files is usually placed in a larger directory whose name is unmistakably

associated with its contents.

Mew Project |
File Name: Directonies: oK
|test.pit | | c:\pic\projects
Cancel
ey e -
| pic Help

& projects

List Files of Type: Drives:
Project Files [~ pijt] j = o j

Opening a new project

After naming the project, click on OK. New window comes up as in the next picture.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm (1 of 4) [4/2/2003 16:18:24]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/5_04Poglavlje.htm

Edit Project
— Project
Target Filename 1] 8
|test_he:r. |
Include Path Eancel

Library Path

Linker Script Path

Development Mode: (MPLAE SIM PIC16F34 | Change...

Language Tool Suite: | Microchip jJ

— Project Files

AT Add Node.

Eopy Hode, .

[Yelete Hode

Build Hode

Mode Froperties. ..

Adjusting project elements

Using a mouse click on "test [.hex]" which activates 'Node properties' option in the bottom right
corner of a window. By clicking on it you get the following window.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm (2 of 4) [4/2/2003 16:18:24]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/5_04Poglavlje.htm

Mode Properties

Hode: | TEST.HEX jJ Language Tool:| MPASM
— Options
Description | | I | Da
Define 21 On
Hex Format ¥ INHX8M. 1 INHX8S I INHX32
Error File ¥ 0On =1 Off
List File * 0On 1 Off
Cross-reference File 1 On ¥ Off
YWarning level I all I warnterr ! err
Case sensitivity ¥ 0On -1 Off
Macro expansion -1 On 1 Off
Default radix 1 HEX I DEC -1 acT
Tab size * 0On 1
Command Line
|faIHHKEH fer /v fu- e+ 1 /p1GF34
Additional Command Line Options
|
1] 4 Cancel Help

Defining parameters of MPASM assembler

From the picture we see that there are many different parameters. Each kind corresponds to one
parameter in "Command line" . As memorizing these parameters is very uncomfortable, even
forbidding for beginners, graphic adjustment has been introduced. From the picture we see which
options need to be turned on. By clicking on OK we go back to previous window where "Add node"
is an active option. By clicking on it we get the following window where we name our assembler
program. Let's name it "Test.asm" since this is our first program in MPLAB.

Add Node

File name: Eolders: 1] 4
|test.asm | c:hpichiprojects
Cancel
- e -
{3 pic
&5 projects Help
Metwork._ ..

List files of type: Drnives:
Source files [*.c;*_asm] j =1 j

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm (3 of 4) [4/2/2003 16:18:24]

http://www.mikroel ektronika.co.yu/english/product/books/PI Cbook/5_04Poglavlje.htm

Opening a new project

By clicking on OK we go back to the starting window where we see added an assembler file.

Edit Project
— Project
Target Filename 0K
|test.hen |
Include Path Eanuc
Library Path L
Linker Script Path
Development Mode: (MPLAE S51M PICT1G6F34 | Change...
Language Tool Suite: | Miciochip jJ
— Project Files
test [hex] Add Node. ..
test [.asm]
Copy Niode. ..

[Yelete Hode

Build/Hiode

Hode Broperties. ..

Assembler file added

By clicking on OK we return to MPLAB environment.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm (4 of 4) [4/2/2003 16:18:24]

mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

Table of contents Chapter overview Next page

5.5 Designing a new assembler file (writing a new
program)

When "project” part of the work is finished, we need to start writing a program. In other words,
new file must be opened, and will be named "test.asm". In our case, file has to be named

"test.asm" because in projects which have only one file (such as ours), name of the project and
name of the source file have to be the same.

New file is opened by clicking on FILE=NEW. Thus we get a text window inside MPLAB work space.

MPLAR - C:APICWPROJEE T VPR EA EIT

e B £ Doy Prisifin Dom oo Wodm b6 ____________
[N e A P S == P S P e N S P2 D

New assembler file opened

New window represents a file where program will be written. Since our assembler file has to be
named "test.asm”, we will name it so. Naming is done (as with all Windows programs) by clicking
on FILE>SAVE AS. Then we get a window like the following picture.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_05Poglavlje.htm (1 of 2) [4/2/2003 16:18:26]

Chapter 5- MPLAB

Save File Az
File Hame: Directories: 1]'4
|test.asm | c:\pichprojects

Cancel
test.asm - L -
ic
X pic Help
&3 projects

[T UMIX format
~| ¥ Keep backup

List Files of Type: Drives: Network...

Source files [*.c;*.asm] j = o j

Naming and saving a new assembler file

When we get this window, we need to write 'test.asm' below 'File name:', and click on OK. After
that, we will see ‘test.asm'’ file name at the top of our window.

Table of contents Chapter overview Next page

© Copyright 1999. mikroaektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_05Poglavlje.htm (2 of 2) [4/2/2003 16:18:26]

mailto:office@mikroelektronika.co.yu

Chapter 5 - MPLAB

Previous page | Table of contents | Chapter overview | Nextpage

Only after all of the preceding operations have been completed we are able to start writing a
program. Since a simple program has already been written in "Assembly Language Programming”
section of the book, so we will use that same program here, too.

_ Program: Proba.asm|—

jProgram for initialization of port B and setting its pins to
;state of logic one

;Version: 1.0 Date: 25.04.2000 MCU: PICL1G6FS4 Written hy: Petar
; Petrovic

;Declaration and configuration of processor

PROZESSOR 16F24

finclude "pleftEd., ine" ;i Processor title
__CONFIG CP OFF & WDT OFF & PWRTE ON & XT OSC
org 0= 00 ; Reset wector

goto Main : o to the beginning of the main

; program

oY Ox=04 ; Interrupt wector
goto Main ; Interrupt routine does not exist

finclude "hank.inc™ ; Macros BANED and BANEL

;Beginning of the main program

Main
BEANE1 ; Select memory bank 1
mowvlw Ox00
moviwft TRISE ; Port B pin=s are output
EANED ; Belect memory bank 0O
movlw OxFF
moviet PORTE : Set all ones to port B
Fetljs goto Fetlija ; Program stays in the loop
end ; Necessary marking the end of a

; program

Program has to be written to a window that's opened, or copied from a disc, or taken from
MikroElektronika Internet presentation using options copy and paste. When the program is copied
to "test.asm" window, we can use PROJECT -> BUILD ALL command (if there were no errors), and
a new window would appear as in the next picture.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_06Poglavlje.htm (1 of 2) [4/2/2003 16:18:28]

Chapter 5- MPLAB

Build Results

Building TEST.HEX...

Compiling TEST.ASH:

Command line: "C:\PROGRA™1\MPLAB\MPASMWIN.EXE /faINHXBM fe+ Jf1l+ fu- fc+
Message[362] C:\PIC\PROJECTS\WAIT.IHC 59 : Register in operand not in
Message[3682] C:\PICAWPROJECTSATEST.ASH 33 : Register in operand not in
Message[3682] C:\PIC\WPROJECTSATEST.ASH 35 : Register in operand not in

Build completed successfully.

n N

Window with messages following a translation of assembler program

We can see from the picture that we get "test.hex" file as a result of translation process, that
MPASMWIN program is used for translation, and that there is one message. In all that information,
the last sentence in the window is the most important one because it shows whether translation
was successful or not. '‘Build completed successfully’ is a message stating that translation was
successful and that there were no errors.

In case an error shows up, we need to double click on error message in '‘Build Results' window.
This would automatically transfer you to assembler program and to the line where the error was.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_06Poglavlje.htm (2 of 2) [4/2/2003 16:18:28]

mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

Table of contents Chapter overview Next page

Simulator is part of MPLAB environment which provides a better insight into the workings of a
microcontroller. Trough a simulator, we can monitor current variable values, register values and
status of port pins. Truthfully, simulator does not have the same value in all programs. If a
program is simple (like the one given here as an example), simulation is not of great importance
because setting port B pins to logic one is not a difficult task. However, simulator can be of great
help with more complicated programs which include timers, different conditions where something
happens and other similar requirements (especially with mathematical operations). Simulation, as
the name indicates "simulates the work of a microcontroller”. As microcontroller executes
instructions one by one, simulator is conceived - programmer moves through a program step-by-
step (line-by-line) and follows what goes on with data within a microcontroller. When writing is
completed, it is a good trait to, programmer’s first check his program in a simulator, and then
runs it out in a real situation. Unfortunately, as with many other good habits, man overflows this
one too, more or less. Reasons for this are partly personality, and partly lack of good simulators.

First thing we need to do, as in a real situation, is to reset a microcontroller with DEBUG > RUN >
RESET command. This command results in bold line positioned at the beginning of a program, and
program counter is positioned at zero which can be seen in status line (pc: 0x00).

— MPLAB IDE - C:APICAPROJECTSATEST.PJT

Eile Praject Editlgehug Optionz Toolz 'Window Help

] (=] 2]

Execute

Sirnulator Stirmufuz b F&
. Halt Trace Shitt+ES
Center Debug Lacation Arimate Chl+Fg
Break Settings... Fz Step F?
Trace Settings. .. Step Ower Fa
Tiriggen| mdiut Setings.. Lpdate All Registers
Tirigaern W uteut Pamts, . Change Program Counter. .

Clear &l Faints...

DT_OFF & PWRTE_ONH & _XT_OSC
Eomples Thigaen Sethings...

Eade Eaverage %2233

Clear Program Memaory... Chil+5hift+F2 RAH-a

Syztem Feset Chil+Shift+F3 |da function "WAITH"
Pawer-On-Reset... Chrl+5hift+F5
enac

Beginning of program simulation, resetting a microcontroller

One of the main characteristics of a simulator is the ability to view register status within a
microcontroller. These registers are also called special function registers, or SFR registers.
We can get a window with SFR registers by clicking on WINDOW->SPECIAL FUNCTION
REGISTERS, or on SFR icon.

Beside SFR registers, it is useful to have an insight into file registers. Window with file registers
can be opened by clicking on WINDOW->FILE REGISTERS.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_07Poglavlje.htm (1 of 2) [4/2/2003 16:18:32]

Chapter 5- MPLAB

If there are variables in the program, it is good to watch them, too. To each variable is assigned

one window (Watch Windows) by clicking on WINDOW->WATCH WINDOWS.

SFRE Registers Windaw

Marme of the
Current project

Menu ling =l |

Toolbar line

Azsembler pragram

Window far watching

variable status
%

Status line

T W AR - CUPICSRLE ETINSHRS BT
Eh Bhgpck Leb Qabeg PioglebPus Dpesa ook Stieden Hidp

2fdress Dpehol Uakee
FRETH H'0Q*

o (oo i
[SEATIRETT T
FEECLwE: ~PIasFs . It

_COWID _OF OFF & W01 8§ B _N.unll:_maJ

i e e PR R] S P el B

[g, naC F ek] e e i)

jenase Slrvkbora pragraascks nenorl]e wesea Fzr
— parts
=L BNz i Besed svchor kriss
patn Hlin parth
Lrlni
DL Bchiy i imberags weckaa | esdild
iy Hkin PomcEd Belorapl o | S000EE
e
LITEN USSR T T { T L Ppmes datobes | eecesd
Flith
Haln v fecobad pragrasa EnTesd
u
=] tepre
el BL0Y vlmdejalizaeife porta &
wrwud TRESH L NEIEF §- e
EEHKR
mawle BoFF
naoud PRERIA ; BERTE £- Dued

File Regizter Windaw —‘_L‘é

(e e

iF

nz.
#F
.
L
L
L5
i]
o
i3
i

aa
-

oo S

B Dn|Zn (A MH: Doy

Elilaly
AOCEE008
ancEe0ne
11181118
RNEEENNR
RO 00
RO 00
ROREEIYY
#OE 00
A11EE1E
i O
AR
UL
An O
aoreone
Ll il
ELe il]
LI Tl]

Ehar

Simulator with open windows for SFR registers, file registers and variables.

The next command in a simulator is DEBUG=RUN>=STEP which starts our steping through the
program. The same command could have been assigned from a keyboard with <F7> key
(generally speaking, all significant commands have keys assigned on the keyboard).

By using the F7 key, program is executed step-by-step. When we get to a macro, file containing a
macro is opened (Bank.inc), and we proceed to go through a macro. In a SFR registers window we
can observe how W register receives value OxFF and delivers it to port B. By clicking on F7 key
again, we don't achieve anything because program has arrived to an "infinite loop". Infinite loop is
a term we will meet often. It represents a loop from which a microcontroller can not get out until
interrupt occurs (if it is used in a program), or until a microcontroller would be reset.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/5_07Poglavlje.htm (2 of 2) [4/2/2003 16:18:32]

mailto:office@mikroelektronika.co.yu

Chapter 5- MPLAB

Table of contents Chapter overview Next page

Since MPLAB has more than one component, each of the components has its own toolbar.
However, there is a toolbar which is some compilation of all toolbars, and can serve as a
commonly used toolbar. This toolbar is enough for our needs, and it will be explained in more
detail. In the picture below, we can see a toolbar we need with a brief explanation of each icon.
Because of the limited format of this book, this toolbar is shown as a hanging toolbar. Generally, it
is placed horizontally below the menu, over the entire length of the screen.

= |
Chﬂﬂgiﬂg 3 toolhar ce— — Dpening the prujec:t
] . /@: Searching for a
5aving a project ——————— . I | — part of tth text
Cutting a part I | Copying a part
of the text out of the text
Pasting a part I E | Saving the
of the text assembler file
Start program Stop program
execution execution
Step by step program p || i .
axecution —— - . — Skip conditions
Microcontroller reset —— 1 HDN — RAM memory
m 1 Window
RAM memor Windﬂw — —— SFR I‘EgiStEI‘S
’ e [5r| R ragist
. . e Repeat translation of
variables Window @ W | = the entire project

Universal toolbar with brief explanations of the icons
Toolbar icon description

—— | If the current toolbar for some reason does not respond to a click on this icon, the next
= one appears. Changeover is repeated so that on the fourth click we will get the same
toolbar again.

Icon for opening a project. Project opened in this way contains all screen adjustments
and adjustment of all elements which are crucial to the current project.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_08Poglavlje.htm (1 of 3) [4/2/2003 16:18:38]

Chapter 5 - MPLAB

Icon for saving a project. Saved project will keep all window adjustments and all
parameter adjustments. When we read in a program again, everything will return to
the screen as when the project was closed.

Searching for a part of the program, or words is operation we need when searching
through bigger assembler or other programs. By using it, we can find quickly a part of
the program, label, macro, etc.

5|

Cutting a part of the text out. This one and the following three icons are standard in all
programs that deal with processing textual files. Since each program is actually a
common text file, those operations are useful.

-

Copying a part of the text. There is a difference between this one and the previous
icon. With cut operation, when you cut a part of the text out, it disappears from the
screen (and from a program) and is copied afterwards. But with copy operation, text is
copied but not cut out, and it remains on the screen.

&

When a part of the text is copied, it is moved into a part of the memory which serves
for transferring data in Windows operational system. Later, by clicking on this icon it
can be 'pasted’ in the text where the cursor is.

Saving a program (assembler file).

Start program execution in full speed. It is recognized by appearance of a yellow status
line. With this kind of program execution, simulator executes a program in full speed
until it is interrupted by clicking on the red traffic light icon.

Stop program execution in full speed. After clicking on this icon, status line becomes
gray again, and program execution can continue step by step.

8 @ 5 B

oy Step by step program execution. By clicking on this icon, we begin executing an
" instruction from the next program line in relation to the current one.

Skip requirements. Since simulator is still a software simulation of real work, it is
possible to simply skip over some program requirements. This is especially handy with

% instructions which are waiting for some requirement following which program can
proceed further. That part of the program which follows a requirement is the part that's
interesting to a programmer.

Resetting a microcontroller. By clicking on this icon, program counter is positioned at
the beginning of a program and simulation can start.

iy
i
By clicking on this icon we get a window with a program, but this time as program
memory where we can see which instruction is found at which address.

With the help of this icon we get a window with the contents of RAM memory of a
microcontroller.

By clicking on this icon, window with SFR register appears. Since SFR registers are
used in every program, it is recommended that in simulator this window is always
== |active.

@I If a program contains variables whose values we need to keep track of (ex. counter), a
window needs to be added for each of them, which is done by using this icon.

When certain errors in a program are noticed during simulation process, program has
— to be corrected. Since simulator uses HEX file as its input, so we need to translate a
~ program again so that all changes would be transferred to a simulator. By clicking on
this icon, entire project is translated again, and we get the newest version of HEX file
for the simulator.

" Previous page | Table of contents | Chapter overview | Nextpage |

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_08Poglavlje.htm (2 of 3) [4/2/2003 16:18:38]

Chapter 5- MPLAB

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_08Poglavlje.htm (3 of 3) [4/2/2003 16:18:38]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

CHAPTER 6
The Samples

Introduction

6.1 Supplying the microcontroller
6.2 Macros used in programs

« Macros WAIT, WAITX
« Macro PRINT

6.3 Samples

. Light-emitting diodes - LEDs
. Keyboard

« Optocoupler
o Optocouplering the input lines

o Optocouplering the output lines
. Relays
. Generating a sound
. Shift reqgisters
o Input shift reqgister
o Output shift register
. 7-segment Displays (multiplexing)
. LCD display
. 12-bit AD converter
. Serial communication

Examples given in this chapter will show you how to connect the PIC microcontroller with other
peripheral components or devices when developing your own microcontroller system. Each
example contains detailed description of the hardware part with electrical outline and comments
about the program. All programs can be taken directly from the from 'MikroElektronika' internet
presentation.

Generally speaking, the correct voltage supply is of utmost importance for the proper functioning
of the microcontroller system. It can easily be compared to a man breathing in the air. It is more

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/6_01Poglavlje.htm (1 of 2) [4/2/2003 16:18:40]

Chapter 6 - Samples

likely that a man who is breathing in fresh air will live longer than a man who's living in a polluted
environment.

For a proper function of any microcontroller, it is necessary to provide a stable source of supply, a
sure reset when you turn it on and an oscillator. According to technical specifications by the
manufacturer of PIC microcontroller, supply voltage should move between 2.0V to 6.0V in all

versions. The simplest solution to the source of supply is using the voltage stabilizer LM7805
which gives stable +5V on its output. One such source is shown in the picture below.

o1
Transformer i
NI “

L

LMy 205 g

2 a2l ez
B 1| E

220 O

¢l = 22pF, £2 = 100mF,
0E = 10pF, B = 1K

In order to function properly, or in order to have stable 5V at the output (pin 3), input voltage on
pin 1 of LM7805 should be between 7V through 24V. Depending on current consumption of device
we will use the appropriate type of voltage stabilizer LM7805. There are several versions of
LM7805. For current consumption of up to 1A we should use the version in TO-220 case with the
capability of additional cooling. If the total consumption is 50mA, we can use 78L05 (stabilizer

version in small TO - 92 packaging for current of up to 100mA).

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_01Poglavlje.htm (2 of 2) [4/2/2003 16:18:40]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Previous page | Table of contents | Chapter overview | Nextpage

Examples given in the following sections of this chapter often use macros WAIT, WAITX and
PRINT, so they will be explained in more detail.

Macros WAIT, WAITX

File Wait.inc contains two macros WAIT and WAITX. Through these macros it is possible to assign
time delays in different intervals. Both macros use the overflow of counter TMRO as a basic
interval. By changing the prescaler we can change the length of the overflow interval of the
counter TMRO.

.‘ EF¥F** TNeclaring constants **s%%

CONSTANT PREICstd = .1

Makro: WAIT.INC

ratandard prescaler walue for THRO

:_7?1".\'7;7; Macros *&&&%%

WATT macro timeconst 1
movlw timeconst_ 1
call WaITstd
erdm

WaITH macro timeconst =, PREEICext
mowli timeconst &
movwE WCYCLE
movlw PRE3Cext
call WAIT x
endn

r2et the delay time period
;write specific prescaler walue

;#**** S'uhprugramﬂ TEFEEF

WaTT=td
movwE TCYCLE ;3et the delay time period
mowvlw PRESC=td ;write specific prescaler walue
WaIT
clrf THMRO
EANEL
movwE OPTION REG ;assign the prescaler to THMRO timer
E4ANED
WaITa bcf INTCON, TOIF seraze THRO Owerflow Flag
WaITh htfss INTCON,TOIF scheck whether it is erased, skip if it
sisn't
goto WaITh ;WMait loop
decfz= WCYCLE, 1 stepeat the loop if delay period has not
JEun out
goto WaITa
RETUEN

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_02Poglavlje.htm (1 of 4) [4/2/2003 16:18:43]

Chapter 6 - Samples

If we use the oscillator (resonator) of 4MHz, for prescaler values 0, 1, and 7 that divide the basic
clock of the oscillator, the interval followed by an overflow of timer TMRO will be 0.512, 1.02 and
65.3 mS. Practically, that means that the biggest delay would be 256x65.3mS which is equal to
16.72 seconds.

Prescaler | Divisor | Owerflow
B OOC0000 1.2 0512 s
B Q0000007 1:4 1.02 tre
BOOOO01I11 | 1:256 5.3 1

In order to use macros in the main program it is necessary do declare variables wcycle and
prescWAIT as will be done in examples which follow in this chapter.

Macro WAIT has one argument. The standard value assigned to prescaler of this macro is 1
(1.02mS), and it can not be changed.

WAIT timeconst_1

timeconst_1 is number from 0 to 255. By multiplying that number with the overflow time period
we get the total amount of the delay: TIME=timeconst_1 x 1.02mS.

Example: WAIT .100
Example shows how to make a delay of 100x1.02mS, or total of 102mS.

Unlike macro WAIT, macro WAITX has one more argument that can assign prescaler value. Macro
WAITX has two arguments:

Timeconst_2 is number from O to 255. By multiplying that number with the overflow time period
we get the total amount of the delay:
TIME=timeconst_1 x 1.02mS x PRESCext

PRESCext is number from 0 to 7 which sets up the relationship between a clock and timer TMRO.
Example: WAITX .100,7

Example shows how to make a delay of 100x65.3 mS, or total of 653mS.

Macro PRINT

Macro PRINT is found in Print.inc file. It makes it easy to show a string of data on one of the
output devices such as : LCD, RS232, matrix printer...etc. The easiest way to form a series is by
using a dt (define table) directive. This instruction stores a series of data into program memory as
a group of retlw instructions whose operand is data from the string.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_02Poglavlje.htm (2 of 4) [4/2/2003 16:18:43]

Chapter 6 - Samples

_ Macro: FPRINT. INC |

FRINT macro Addr, 2tart, End, ¥ar, Outc

Local Next : Local label
Local Exit

mowlw 3tart ; Address of the first member in the series
movwE Var
HNext
mowE Var,w ; Pointer -> W red.
call Addr ; Beries (WM reqg.) -> W req.
; Data iz in W req.
out p Display data on the output dewice
mowE Var,w
®xorlw End-1
btfsc 3TATOE,Z ; Iz it the end of the seriesr
goto Exit ;s If it is, get out of the loop
inct Var, £ ; If it isn't, set the Pointer to the next member
; of the series
goto Next : Bepeat the loop
Exit
ehdm

How one such sequence is formed by using dt instruction is shown in the following example:

org 0x00
goto Main

String novwf PCL
Stringl dt "this is "ASCII' string"
String2 dt "Second string"

End
Mai n
movliw .5

call String

First instruction after label Main writes the position of a member of the string in w register. We
jump with instruction call onto label string where position of a member of the string is added to
the value of the program counter: PCL=PCL+W. Next we will have in the program counter an
address of retlw instruction with the desired member of the string. When this instruction is
executed, member of the string will be in w register, and address of the instruction that executed
after the call instruction will be in the program counter. End label is an elegant way to mark the
address at which the string ends.

Macro PRINT has five arguments:
PRINT macro Addr, Start, End, Var, Out

Addr is an address where one or more strings (which follow one by one) begin.

Start is an address of the first member of the string

End is an address where the string ends

Var is the variable which has a role of showing (pointing) the members of the string

Out is an argument we use to send the address of existing subprograms assigned to output
devices such as : LCD, RS-232, etc.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_02Poglavlje.htm (3 of 4) [4/2/2003 16:18:43]

Chapter 6 - Samples

Example: org 0x00

goto Main
Jeries movwf PCL
Message dt "mikroElektronika™

End

Main

PRINT 3Zerie=s, HMWessage, End, Pointer, LCDw

Macro PRINT writes out a string of ASCII caracters for 'MikroElektronika' on LCD display.
The string takes up one part of program memory beginning at address 0x03.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/6_02Poglavlje.htm (4 of 4) [4/2/2003 16:18:43]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Previous page | Table of contents | Chapter overview | Nextpage

Light-Emitting Diodes - LEDs

LEDs are surely one of the most commonly used elements in electronics. LED is an abbreviation
for 'Light Emitting Diode'. When choosing a LED, several parameters should be looked at:
diameter, which is usually 3 or 5 mm (millimeters), working current which is usually about 10mA
(It can be as low as 2mA for LEDs with high efficiency - high light output), and color of course,
which can be red or green though there are also orange, blue, yellow....

LEDs must be connected around the correct way, in order to emit light and the current-limiting
resistor must be the correct value so that the LED is not damaged or burn out (overheated). The
positive of the supply is taken to the anode, and the cathode goes to the negative or ground of the
project (circuit). In order to identify each lead, the cathode is the shorter lead and the LED "bulb"
usually has a cut or "flat” on the cathode side. Diodes will emit light only if current is flowing from
anode to cathode. Otherwise, its PN junction is reverse biased and current won't flow. In order to
connect a LED correctly, a resistor must be added in series that to limit the amount of current
through the diode, so that it does not burn out. The value of the resistor is determined by the
amount of current you want to flow through the LED. Maximum current flow trough LED was
defined by manufacturer. High-efficiency LEDs can produce a very good output with a current as
low as 2mA.

To determine the value of the dropper-resistor, we needto
know the value of the supply voltage. From this we subtract Jri
the characteristic voltage drop of a LED. This value will range Ll I R H
from 1.2v to 1.6v depending on the color of the LED. The

answer is the value of Ur. Using this value and the current we 7

want to flow through the LED (0.002A to 0.01A) we can work Ud l I }

out the value of the resistor from the formula R=Ur/1. _ _

= flat"; LED

LEDs are connected to a microcontroller in two ways. One is to turn them on with logic zero, and
other to turn them on with logic one. The first is called NEGATIVE logic and the other is called
POSITIVE logic. The above diagram shows how they are connected for POSITIVE logic. Since
POSITIVE logic provides a voltage of +5V to the diode and dropper resistor, it will emit light each
time a pin of port B is provided with a logic 1 (1 = HIGH output). NEGATIVE logic requires the LED
to be turned around the other way and the anodes connected together to the positive supply.
When a LOW output from the microcontroller is delivered to the cathode and resistor, the LED will
illuminate.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_03Poglavlje.htm (1 of 3) [4/2/2003 16:18:45]

Chapter 6 - Samples

+ov
L
-i: L jm.
(3% Fad
2] &[] 2 i
!|; R&z Ra0 :1|6 AMHz
[|ReaToCK) = | J —— |
T 4 1= —
I ——|%R pjc esc2f] T:3| ey
‘ =) 14 'l'
o {vss 16F84 wed[]
] 11 I300T AR |
——{|REOANT RET]
T iz 350 A My
—|rE1 RER !
= 2 i1 3300% L]
—|re2 RES]
@ % 3500 A3 M
|—[RE3 RE< b
3300 AR M
3300 ﬁ! LED
330Cx ﬁ LETh
T p
3300 AA M
| SRS | H d

Connecting LED diodes to PORTB microcontroller

The following example initializes port B as output and sets logic one to each pin of port B to turn
on all LEDs.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_03Poglavlje.htm (2 of 3) [4/2/2003 16:18:45]

Chapter 6 - Samples

— Program: LED.A3M |—

prEEEE Declaring and conficuring a microcontroller *%*%%#

PROCESS0R l6fs4
#ginclude "plefid,inc™

__ CONFIG CP OFF & WDT OFF & PWRTE ON & XT 035C
JEEEEX Brructure of progdram memory FEEEE

ORG O=00 : Beset wector
goto Main

ORG =04 ; Interrupt wector
goto Main ; No interrupt routine

#ginclude "bank.inc™ ; Assistant f£iles

Main ; Beginning of program
BANK1
wowlw Oxff ; Port 4 initialization
movwE TRISA ; TRIZA <- Ox£E all ingut
wowlw 0x00 ; Port B initialization
wovwf TRIGE ; TRIZGE <- 0x00 all output
BANED

mowlny OxEf

wovwE PORTE ; Turn on all leds
Loop

goto Loop } Stay in the loop

End y End of program

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_03Poglavlje.htm (3 of 3) [4/2/2003 16:18:45]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Prévious page | Table of contents | Chapter overview | Nextpage

Keyboards are mechanical devices used to execute a break or make connection between two
points. They come in different sizes and with different purposes. Keys that are used here are also
called "dip-keys". They are soldered directly onto a printed board and are often found in
electronics. They have four pins (two for each contact) which give them mechanical stability.

+oy
T 'Pull-up' resistor
%[] %]
=)
- =T
1 et 12
[|rez Rad
Z i
{|Fi R0 4MHz
T T2 1 % —
‘U ‘ﬂ +Ey - [reameock o8 [F—a
n n o4 1= — }1
{ WeIR pje 952 :|—‘L|14 i |
vss T6FB4 wed [T -
= = EtRBD.!NT et [pt
reset ToT R l
[|rE1 REG [] |
4 11 =
[Irez RES[]
L Q G
= [|rE2 RE4]]

Example of connecting keys to microcontroller pins.

Key function is simple. When we press a key, two contacts are joined together and connection is
made. Still, it isn't all that simple. The problem lies in the nature of voltage as an electrical
dimension, and in the imperfection of mechanical contacts. That is to say, before contact is made
or cut off, there is a short time period when vibration (oscillation) can occur as a result of
unevenness of mechanical contacts, or as a result of the different speed in pressing a key (this
depends on person who presses the key). The term given to this phenomena is called SWITCH
(CONTACT) DEBOUNCE. If this is overlooked when program is written, an error can occur, or the
program can produce more than one output pulse for a single key press. In order to avoid this, we
can introduce a small delay when we detect the closing of a contact. This will ensure that the
press of a key is interpreted as a single pulse. The debounce delay is produced in software and the
length of the delay depends on the key, and the purpose of the key. The problem can be partially
solved by adding a capacitor across the key, but a well-designed program is a much-better
answer. The program can be adjusted until false detection is completely eliminated.

In some case a simple delay will be adequate but if you want the program to be attending to a
number of things at the same time, a simple delay will mean the processor is "doing-nothing" for a
long period of time and may miss other inputs or be taken away from outputting to a display.

The solution is to have a program that looks for the press of a key and also the release of a key.
The macro below can be used for keypress debounce.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_04Poglavlje.htm (1 of 3) [4/2/2003 16:18:47]

Chapter 6 - Samples

H Makro: TESTEE. INC —
TESTER macro HilLo, Port, Bit, Delay, Address
Local Exit ; Local lahels
Local Loop
if Hilo == ; Iz the key pressed:
btfsc Port, EBit ; Is input line LOW?Z
else
btfss Port,Eit ; Is input line HIGH?
endif
goto Exit ; If key hasn't been pressed, exit the
; WMAacro
WAIT Delay ; Delay for key debounce
Loop ;
if Hilo ==
btfss Port, Bit ; Iz the key releasedr
else
btfsc Port, EBit
endif
goto Loop
WAIT Delay ; Delay for key debounce
call Addrezs ; Call the gervice subprogran
Exit ; Exit the macro
endn ; End of macro

The above macro has several arguments that need to be explained:
TESTER macro HiLo, Port, Bit, Delay, Address

HiLo can be '0' or '1' which represents rising or falling edge where service subprogram will be
executed when you press a key.

Port is a microcontroller's port to which a key is connected. In the case of a PIC16F84
microcontroller, it can be PORTA or PORTB.

Bit is port's pin to which the key is connected.

Delay is a number from 0 to 255, used to assign the time needed for key debounce detection -
contact oscillation - to stop. It is calculated as TIME = Delay x 1ms.

Address is the address where the micro goes after a key is detected. The sub-routine at the
address carries out the required instruction for the keypress.

Example 1: TESTER 0, PORTA, 3, .100, Testerl_above

Key-1 is connected to RAO (the first output of port A) with a delay of 100 microseconds and a
reaction to logic zero. Subprogram that processes key is found at address of label Testerl_above.

Example2: TESTER 0, PORTA, 2, .200, Tester2_below

Key-2 is connected to RA1 (the second output of port A) with 200 mS delay and a reaction to logic
one. Subprogram that processes key is found at address of label Tester2_below.

The next example shows the use of macros in a program. TESTER.ASM turns LED on and off. The
LED is connected to the seventh output of port B. Key-1 is used to turn LED on. Key-2 turns LED
off.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_04Poglavlje.htm (2 of 3) [4/2/2003 16:18:47]

Chapter 6 - Samples

H Program: TEZITEER.ALZM

sE*%%% Declaring and conficquring a microcontroller *#*+%+%
PROCESSOR lefod
#ginclude "plefsd.inc”™
_ CONFIG CP OFF & WDT OFF & FPURTE ON & XT 0O3C

JEFF%F* Declaring wariabhles ##%%*

Chlock 0xOC ; Beginning of RAN
WCYCLE ; Belongs to 'TAIT' macro
PREZCwait

endc

JEFEEET Atructure of program Wemory FEEEE

ORG Ox 00 s Reset wector
o to Main

OR= Ox 0 ; Interrupt wector
oo to Main ; Mo interrupt routine

#ginclude "bank.inc™ ; Assistant files
#include "tester.inc”
#ginclude "wait.inc™

Main ; Beginning of a program
BANE1L
mowvlw Ox£EL ; Port 4 initialization
mowwrE TRISA ; TRIZA - 0Oxff
mowvlw Ox00 ; Port B initialization
mowirf TRIGE : TRIZE - 0Ox00
BANED
clrt FORTE ; PORTE «<- 0O

Loop

TESTER 0, PORTA, 2, .100, On ; Tester 1
TESTER 0, PORTA, 3, .l00, Off ; Tester 2

oo to Loop

01
baf FORTE 7 ; Turn on LED
return

DEE
bct PORTE 7 ; Turn off LED
returh
End ; End of program

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_04Poglavlje.htm (3 of 3) [4/2/2003 16:18:47]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Prévious page | Table of contents | Chapter overview | Nextpage

Optocoupler combine a LED and photo-transistor in the same case. The purpose of an optocoupler
is to separate two parts of a circuit.

This is done for a number of reasons:

. Interference. One part of a circuit may be in a location where it picks up a lot of
interference (such as from electric motors, welding equipment, petrol motors etc.) If the
output of this circuit goes through an optocoupler to another circuit, only the intended
signals will pass through the optocoupler. The interference signals will not have enough
"strength" to activate the LED in the optocoupler and thus they are eliminated. To protect a
section of the device. Typical examples are industrial units with lots of interferences which
affect signals in the wires. If these interferences affect the function of control section, errors
will occur and the unit will stop working.

. Simultaneous separation and intensification of a signal. A signhal as low as 3v is able
to activate an optocoupler and the output of the optocoupler can be connected to an input
line of a microcontroller. The microcontroller requires an input swing of 5v and in this case
the 3v signal is amplified to 5v. It can also be used to amplify the current of a signal. See
below for use on the output line of a microcontroller for current amplification.

. High Voltage Separation. Optocouplers have inherent high voltage separation qualities.
Since the LED is completely separate from the photo-transistor, optocouplers can exhibit
voltage isolation of 3kv or higher.

Optocouplers can be used as input or output device. They can have additional functions such as
Schmitt triggering (the output of a Schmitt trigger is either 0 or 1 - it changes slow rising and
falling waveforms into definite low or high values). Optocouplers are packaged as a single unit or
in groups of two or more in one housing. They are also called PHOTO INTERRUPTERS where a
spoked wheel is inserted in a slot between the LED and phototransistor and each time the light is
interrupted, the transistor produces a pulse.

Each optocoupler needs two supplies in order to function. They can be used with one supply, but
the voltage isolation feature is lost.

The way it works is simple: when a signal arrives, the LED within the optocoupler is turned on,
and it shines on the base of a photo-transistor within the same case. When the transistor is
activated, the voltage between collector and emitter falls to 0.5V or less and the microcontroller
sees this as a logic zero on its RA4 pin.

The example below is a counter, used for counting products on production line, determining motor
speed, counting the number of revolutions of an axis etc.

Let the sensor be a micro-switch. Each time the switch is closed, the LED is illuminated. The LED
'transfers' the signal to the phototransistor and the operation of the photo-transistor delivers a
LOW to input RA4 of a microcontroller. A program in the microcontroller will be needed to prevent
false counting and an indicator connected to any of the outputs of the microcontroller will shows
the current state of the counter.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_05Poglavlje.htm (1 of 3) [4/2/2003 16:18:52]

Chapter 6 - Samples

12

1k

L 132
Roz R[]
T
Rz Aol AMHz
1& | —
RATOCK] asc []
1< =
WCLR OEC2 []——— —_|_
L PIC sl |
vss 1GF84 vedd [T
il
REQANT RETL]
1z
REA REE[]
11
REZ RES[]
L4
RE3 RE4]]

Input line optocoupler example

Makro:

&l

;ttttt

Main

Loop

PEOCE330F. 16f£a4

#include "plafsd, inc”

OPTO UL. ASH

gHaFE® Declaration and confiquring a microcontroller #%+%#

__CONFIG _CP_OFF & WDT OFF & PWRTE_ON & XT OSC

FProgram memory Structure *##%%*

ORG 0xan

goto Main

ORG Ox04

goto Main
#include "hank.inc™
BANE]1

movlw Oxef

movirE TRISA
movluw Ox00

movirE TRISE

mowln h'0011000o0!
movirE OFTION _EREG
BANED

clrf PORETE

clrf TMRO

mowE THMRAO , wr
moviyE PORTE

goto Loop

End

L

: Reset wector

Interrupt wector
No interrupt routine

bdszistant f£iles
Eeginning of program

Port A initialization

TEISA <- OxfE
port B initialization
TEISE <- 0=00

Fad4 -= THMRO, P3=1:2
Increment THMRO tofat falling edge

FOETE <- 0

TMED «<- 0O

Copy the timer walue
to PORTE

Fepeat the loop

End of program

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_05Poglavlje.htm (2 of 3) [4/2/2003 16:18:52]

Chapter 6 - Samples

An Optocoupler can be used to separate the output signal of a microcontroller from an output
device. This may be needed for high voltage separation or current amplification. The output of
some microcontrollers is limited to 25mA. The optocoupler will take the low-current signal from

the microcontroller and it's output transistor will drive a LED or relay, as shown below:

+1 2y +12v
1 el 15
[z ral [
2 11 %
Rt Raa[] hHz EH §
i L]
S Eﬂmrrocm 0ECA]W_—l '= |
T 12w
WEZLR vscz | +5v
5 PIC I | '—I L I“:.“ relay
f[w5 16F84 wad]]
] 13
- = [Jre0anT RET
E‘ 1[:I|E ‘ 330R
REA REG 1 1
i!‘u: :Ill LEZQ& E!
[|rez RES[] f[- =
— o 10
[Jre= RE4[] = [‘]__|

CHYT7

Output line optocoupler example

ZMD

The program for this example is simple. By delivering a logic '1' to the fourth pin of port A, the
LED will be turned on and the transistor will be activated in the optocoupler. Any device connected
to the output of the optocoupler will be activated. The transistor current-limit is about 250mA.

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_05Poglavlje.htm (3 of 3) [4/2/2003 16:18:52]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Prévious page | Table of contents | Chapter overview | Nextpage

The relay is an electromechanical device, which transforms an electrical signal into mechanical
movement. It consists of a coil of insulated wire on a metal core, and a metal armature with one
or more contacts.

When a supply voltage was delivered to the coil, current would flow and a magnetic field would be
produced that moves the armature to close one set of contacts and/or open another set. When
power is removed from the relay, the magnetic flux in the coil collapses and produces a fairly high
voltage in the opposite direction. This voltage can damage the driver transistor and thus a reverse-
biased diode is connected across the coil to "short-out" the spike when it occurs.

1 et 12
[Jrez rad [
Z ir
L: RAz R0 :1|E AhHz
. EHM’I’QCKI 0501 :!ﬁ,_—i' | = ~5§|2_|D‘v’
L W ppc 9562 :!441'—|+5V I El T|
l_[vss 16F84 v [—

£ 11

T = [|REOINT RET[]

w 1 T 12

= Orel REG
a 11
[|re2 rES]

— o 1
- [re= rE4(] LOAD
. R ectifl
Pratective e I:
diode * T 12V
. =t
[g
T1 "
10k A || J
1 | Felay

0

Connecting a relay to the microcontroller via a transistor

Many microcontrollers cannot drive a relay directly and so a driver transistor is required. A HIGH
on the base of the transistor turns the transistor ON and this activates the relay. The relay can be
connected to any electrical device via the contacts.

The 10k resistor on the base of the transistor limits the current from the microcontroller to that
required by the transistor. The 10k between base and the negative rail prevents noise on the base
from activating the relay. Thus only a clear signal from the microcontroller will activate the relay.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_06Poglavlje.htm (1 of 4) [4/2/2003 16:18:54]

Chapter 6 - Samples

1 A 12
Eﬂpz R :1|T “ | P
[fres Rl ahiHz —
1 1E _ 3
+5w [Qrearock osct [— |
10k 4 1= I —
T+ [|wmrw osc2 [l—— 3 | |
L PIC e+ .t
l_[vss 16F84 waa [T
] 12
?.3 ‘: = [JReomT RET :1|2 0 ey
2 e|.:HE=1 i / S0Hz
1 [|rE2 RES[] o
— s|-: - - jﬂ LOAD
3 Protective rectifier
diode * T 12V
1l
— o

Ez" 1 S

L] ‘IE A || e Cptocoupler

I Relay _ supply
H11B1

coil

Connecting the optocoupler and relay to a microcontroller

A relay can also be activated via an optocoupler which at the same time amplifies the current
related to the output of the microcontroller and provides a high degree of isolation. High current
optocouplers usually contain a 'darlington’ output transistor to provide high output current.

Connecting via an optocoupler is recommended especially for microcontroller applications, where
motors are activated as the commutator noise from the motor can get back to the microcontroller
via the supply lines. The optocoupler drives a relay and the relay activates the motor.

The figure below shows the program needed to activate the relay, and includes some of the
already discussed macros.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_06Poglavlje.htm (2 of 4) [4/2/2003 16:18:54]

Chapter 6 - Samples

&

=EEEEE
r

=EEEEE
r

=EEEFE R
L

nEEEEE
r

Main

Loop

On

O£t

Program: FELAY. 43N

Declaring and configuring a microcontroller ##%%%
PEOCESZ0R 16£84
ginclude "plef&d. inc'
__CONFIG _CP_OFF &« _WDT _OFF & _PWRTE_ON & _®T_03C
Declaring the wariables *%+%%%
Chlock Ox0C ; Beginning of BEAM
WCYCLE ; Belongs to macros WAIT and TWAITX
PRESCwait
endc
Declaring the hardware *#*#%%%
#define FELAY PORTE,6 ! Belay is on the 7th pin of port B
Structure of program memory FEEEE
ORG 0x00 ; Rezet wector
goto Main
ORG Ox04 ; Interrupt wector
goto Main ; No interrupt routine
#include "bank.inc” : Macros
ginclude "tester.inc”
#ginclude "wait.inc"™
! Beginning of program
BANEL
mowvlw bfO0010111F ; Initialization of port &
movwE TRISA ; TRISL - 0x17
movlw Ox00 ; Initialization of port B
wovwE TRISE ; TRISE - 0x00
BANED
clrf PORTE ; PORTE =- 0x00
TESTEE 0, PORTE , 0O, .1l00, 0On ; Tester 1
TESTER 0, PORTE , 1, .l00, 0OfE ; Tester 2
o to Loop
bzf BELAY ; Turn the relay on
return
bcf RELAY ; Turn the relay off
return
End ; End of program

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_06Poglavlje.htm (3 of 4) [4/2/2003 16:18:54]

Chapter 6 - Samples

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/6_06Poglavlje.htm (4 of 4) [4/2/2003 16:18:54]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Prévious page | Table of contents | Chapter overview | Nextpage

A Piezo diaphragm can be added to an output line of a microcontroller to deliver a "speaker"
tones, beeps and signals.

It is important to know there are two main types of piezo sound-emitting devices. One has active
components inside the case and only requires a DC supply for the "speaker" to emit a tone or
beep. Generally the tones or beeps emitted by these "speaker" or "beepers" cannot be changed -
they are fixed by the internal circuitry. This is not the type we are discussing in this article.

The other type consists of a piezo diaphragm and requires a signal to be delivered to it for it to
function. Depending on the frequency of the waveform, the output can be a tone, tune, alarm or
even voice messages.

In order for them to work we must deliver a cycle consisting of a HIGH and LOW. It is the change
from HIGH to LOW or LOW to HIGH that causes the diaphragm to "dish" (move) to produce the
characteristic "tinny" sound. The waveform can be a smooth change from one value to the other
(called a sinewave) or a fast change (called a SQUARE WAVE). A computer is ideal for producing a
square wave. The square wave delivery produces a slightly harsher output.

Connecting a piezo diaphragm is very simple. One pin is connected to the negative rail and the
other to an output of a microcontroller, as shown in the diagram below. This will deliver a 5v
waveform to the piezo diaphragm. To produce a higher output, the waveform must be increased
and this requires a driver transistor and inductor.

+5"‘-II +-5-.‘.- . J -
[rae Rid]J
Z 17
- - S —[Rz R]_ 4MH2
SEIRE RS :
[JResTockl o5]—I_ﬁ'j |
4 15 =
—UFF pjg esc 1|—_L|4 = | =+ -r
T2 '|'1&I .] __|_—[wss TBF84d wad :IJ -r |
1" ‘ E‘n " Treon re7]
e = T 1z -
[|red REG |])
2 1
1 [|rez RES] % T
- = =) 16
[rexz RE4]]

S I N e

Connecting a piezo diaphragm to a microcontroller

As with a key, you can employ a macro that will deliver a BEEP ROUTINE into a program when
needed.

BEEP macro freq , duration:

freq: frequency of the sound. The higher number produces higher frequency

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_07Poglavlje.htm (1 of 4) [4/2/2003 16:18:57]

Chapter 6 - Samples
duration: sound duration. The higher the number, the longer the sound.
Example 1: BEEP OxFF, 0x02

The output of the piezo diaphragm has the highest frequency and duration at 2 cycles per 65.3mS
which gives 130.6 mS

Example2: BEEP 0x90, 0x05

The output of the piezo diaphragm has a frequency of 0x90 and duration of 5 cycles per 65.3mS.
It is best to determine these macro arguments through experimentation and select the sound that
best suits the application.

The following is the BEEP Macro listing:

H Macro: EEEP.INC
| |

pEEEEE Declaring constants FFFFF

COMSTANT PRESCheep = b'OO0O00OL11' ; 65,3 ms per cycle

:_'.\".\' *E%F Macros FEEEE

BEEPF macro freq,duration
mowlw freq
mowwf Beep TEMPL
movlw duration
call EBEEPsub
endn

BEEPinit macro
hcf EEEPporc
BANEL
bct BEEEPtris
BEANED
endm

:_'.'r'.\' TEF Suhprugrams FTEERAEY

BEEPsub mowvwE Beep TEMPE ; Get the walue of zound duration
clrf THRO ; Initiali=ze the counter
bctE EEEPport
BANE]L
bct EEEPport
movlw PREZCheep ; Set the prescaler for THMRO
wovwE OPTIOH REG : OPTION =- W
BANED
BEEPa bct INTCON, TOIF ; Erase the THRO Overflow Flag
EEEFh bsE EEEFpoOrtL
call E_Wait : Duration of logic 'l
bcf BEEPportc
call E Wait : Duration of logic 'O
btfss INTCON,TOIF ; Check the THMRO overflow flag
goto EBEETPh !} S5kip of it is setc
decfsz Eeep TEMFZ,1 : Is the Beep TEMPFZ = 0 7
goto EBEEPa ; If not, jump to BEEP again
FETUEN

B_Wait mowfw Beep TEMFP1
noviwt Beep TEMP3
B_Waita decfsz EBeep TEMF3,1
goto B _Waita

RETUEN

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_07Poglavlje.htm (2 of 4) [4/2/2003 16:18:57]

Chapter 6 - Samples
goto B Waita
FETUEN

The following example shows the use of a macro in a program. The program produces two
melodies which are obtained by pressing T1 or T2. Some of the previously discussed macros are
included in the program.

H Program:EEEP. ASH |

J¥F*FF Declaring and configuring a microcontroller **&#*%

PROCESS0R 16f£84d
#ginclude "plofsd,inc”

___CONFIG CP OFF & WDT OFF & PWRTE ON & XT 03C
JFFEF* Declaring wvariahles *%%%%

Chlock 0x0C ; Beginning of FAM

WCY¥CLE ; Belongs to 'WAITX' macro
PREZCwait

Beep TEMF1 ; Belongs to 'BEEP' macro
Beep TEMPZ

Beep TEMP3I

endc

JEEFFY Declaring the hardware s%%%%

gdefine BEEPport PORTA,3 ; Port and pin for piezo diaphragm
gdefine BEEPtris TREISA,3 H

JEEEET Brructure of program memory FEEEE

OR= 0=00 s BReset wector

goto Main

ORG Ox04 ; Interrupt wector
goto Main ; No interrupt routine
#ginclude "hank.inc™ ; Aszzistant files

#ginclude "tester.inc™
#include "wait.inc™
ginclude "heep.inc™

Main ; Beginning of the program
BANEL
movlw bFO0O010111 ; Port A initialiszation
movwE TRIGA ; TRIZA <- 0Oxl7
BAWNED
BEEPinit ; Beeper initiali=zation
Loop

TESTER 0, PORTA, 0O, .100, Playl ; Button 1
TESTER 0, PORTA, 1, .100, PlayZ ; Button 2
goto Loop
Flayl
BEEE?P 0Ox<FF, 0Ox02
BEEFP 0x90, 0x05
BEEEP 0xCO, 0x03
BEEF 0OxFF, 0Ox03 ; First melody
return
Playd
EEEP 0Oxbb, 0x02
BEEEP 0x87, 0x05
BEEP 0OxaZ, 0x03
http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_07Poglavlje.htm (3 of 4) [4/2/2003 16:18:57]

Chapter 6 - Samples
riLayo

BEEF 0Oxbb, 0Ox0OZ
BEEP 0Ox387, 005
BEEP 0(xaz, 0Ox03

BEEP 0x98, O0Ox03 ; Second welody
return
End r End of program

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/6_07Poglavlje.htm (4 of 4) [4/2/2003 16:18:57]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Table of contents Chapter overview Next page

There are two types of shift registers: input and output. Input shift registers receive data in
parallel, through 8 lines and then send it serially through two lines to a microcontroller. Output
shift registers work in the opposite direction; they receive serial data and on a "latch” line
signal, they turn it into parallel data. Shift registers are generally used to expand the number of
input-output lines of a microcontroller. They are not so much in use any more though, because
most modern microcontrollers have a large number of input/output lines. However, their use with
microcontrollers such as PIC16F84 is very important.

Input shift registers transform parallel data into serial data and transfer it to a microcontroller.
Their working is quite simple. There are four lines for the transfer of data: clock, latch, load and
data. Data is first read from the input pins by an internal register through a 'latch’ signal. Then,
with a 'load' signal, data is transferred from the input latch register to the shift register, and from
there it is serially transferred to a microcontroller via 'data’ and ‘clock’ lines.

_AE
B —
02
2| o
c 0 —
= Ihput :
z B latch reS}i-ISIEar
% F_5| register d
(W
55
L H | 9 Serial
Latep 12 output
atch —
Clack—
Load 12

An outline of the connection of the shift register 74HC597 to a micro, is shown below.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (1 of 7) [4/2/2003 16:19:01]

Chapter 6 - Samples

—UrLrurrrr
Connector
\ N 1 L 12
mE T [rez RAd
< — z 17
<
51—[Ring '-.lc-:]J L_HPS RAD - -
E: [}z ained . [IRaTECE] O5CA]—I_L—il |
1 Ll ;! 4 15 [=]
0 PInl Sesklula _| MCLR age2 [M—————
4 [Eaﬂlsl-:ll:l | g PIC :1|4 I_I *ﬁi_"'
Q [] e mpg_fr':j;;‘]— s 16F84 e[l
3 =
= [f = ! " Hreonn re7 [1— i
als [] e awe| —— 10 T iF 3O AR |
7 . 3 = 1 —|REl RES | —T—= I
E L BlpT MH]J 1 a a _1|1 TI00T i:llg LED
e s 1 R
[) _1|-:- 3300t A |
= TAHCEDT7 = RE3 FE4| —r= Il
3300% AA |
3300% i,ﬂ LED
3300% iﬁ'ﬂ LED
3300% AA |

How to connect an input shift register to a microcontroller

In order to simplify the main program, a macro can be used for the input shift register. Macro
HC597 has two arguments:

HC597 macro Var, Varl

Var variable where data from shift register input pins is transferred
Varl loop counter

Example: HC597 data, counter

Data from the input pins of the shift register is stored in data variable. Timer/counter variable is
used as a loop counter.

Macro listing:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (2 of 7) [4/2/2003 16:19:01]

Chapter 6 - Samples

H Makro: HCS597.INC

HC 597 macro War ,Varl

Local Loop ; local lakbel

wowlw .8 ; transfer eight bits

novwE Varl ; counter initiali=ation

bat Latch ; receive status from pins at input latch
nop

bof Latch

bct Load
nop
bstf Load
Loop rlf Var, £ ! Rotate '"Var' one space to the left
btf=z=z Data ; Iz Data line = '1' =2
betf Var, 0 ; If not, set erase hit '0' at War wariabhle
btfzc Data ; Iz Dataline = '0'?
bstf Var,0 ; If not set bitc 'O
b=t Clock ; make one clock
nop

bef Clock

decfsz Varl,f !} are 8 hits receiwved?
goto Loop ; 1f not, repeat
endm

Example of how to use the HC597 macro is given in the following program. Program receives data
from a parallel input of the shift register and moves it serially into the RX variable of the
microcontroller. LEDs connected to port B will indicate the result of the data input.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (3 of 7) [4/2/2003 16:19:01]

Chapter 6 - Samples

L!‘ Program: HCS97.INC

pF%F% %% Declaration and configuration of microcontroller *#%#*

PEOCESS0R. 16E£54
#ginclude "plefsd.inc”™

__CONFIG _CP_OFF &« _WDT_OFF & _PWRTE_ON & _®T_03C
pF%F*F*% Declaring the wariahleszs *##*#**

Chlock Ox0OC ; beginning of FRAM
| 1

CountiPI

endc

pe%E %% Declaring the hardware *%%#%#

#define Data PORTA,O ; can be any other I/0 pin
#define Clock PORTA,1L
gdefine LatchPORTAL,Z
#define Load PORTA,3

JEREEY Program memory sStructure FEEEW

ORG =00 ! reset wector
goto Main

ORG 0x04 ; Interrupt wector
goto Main ; ho interrupt routine
#ginclude "hank. inc™ ; asgistant files

#ginclude "hcoi37.inc™

Main ; beginning of a program
BEANEL
wowlw bfO00LlOoolr ; port 4 initialization
movwwE TRISA ; TRIZA <- 0Ox1l
clrf TRISE : vins of vort B
EANED
clrf FORTA ; PORTA - 0Ox00
bzt Load ; Enable 3HIFT register
Loop HC597 RBx, CountiPI ! Status of input pins of SHIFT register
movE B, W ; Are found in wariable BX
movwE PORTE ; Set the contents of BX register to
; port B
goto Loop ; Repeat the loop
End ; End of program

Output shift registers transform serial data into parallel data. On every rising edge of the clock,
the shift register reads the value from data line, stores it in temporary register, and then repeats
this cycle 8 times. On a signal from ‘latch’ line, data is copied from the shift register to input

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (4 of 7) [4/2/2003 16:19:01]

Chapter 6 - Samples

register, thus data is transformed from serial into parallel data.

Serial 14 15
input G —
_1 ':!E
2 [:!C g
3 5
. L~ Cp
Shift Letch 4 ;
register register —— UE =
L5 QF éﬁ
_Ei QG
11 —— OH
Clock — .
Letch 12

An outline of the 74HC595 shift register connections is shown on the diagram below:

33082 wx ima . = jﬂ
_ﬁ[l_ﬂ._:‘ e — N y T
—} Ii e Moo [F. R0 — iH:
3-31] Q D 4 1 [—
. e Bl ot [reatock osci [E }
Eﬁﬁﬂ ®EET) —]e Seshuad}— — WCLR 0502 [J——s—
._%'m_u— Bind 0E P ple g !
33 il —1 il_'—L v 16F84 waa[1—
Eﬂﬂ. mE |5 |_[::: ::: L . ‘ ?[REOANT RET :1|2
_EEEM Hae Jhts = I [ret res[]
reaet a 11
] — ﬂ v _L_EI Vas Gkl Im“ 1 gl.: REZ RE:S :1|c-
= © 74HC595 - Qe Real]

Connecting an output shift register to a microcontroller

Macro used in this example is found in hc595.inc file, and is called HC595.

Macro HC595 has two arguments:

HC595 macro Var, Varl

Var variable whose contents is transferred to outputs of shift register.

Varl loop counter

Example: HC595 Data, counter

The data we want to transfer is stored in data variable, and counter variable is used as a loop

counter.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (5 of 7) [4/2/2003 16:19:01]

Chapter 6 - Samples

H Makro: HCS9S. INC

HC595 macro War,Varl

Local Loop ; local label
mowlw .5 ; transfer eight bits
wovwf Warl ; counter initiali=zation
Loop rlf Var ,f : Rotate 'War' one space to the left
brtf== STATUS,C r Iz carry = '1' 2
bct Data ; If not, set Data line to 'O
btf=sc STATOS,C ; Iz carry = '0' 2
bzt Data ; If not, set Data line to 'l
bst Clock ; Make one clock
nop

bet Clock

decfs=z Varl,f ; Are eight bits sentr

goto Loop ; If not, repeat

bsf Latch ; If all & bits hawve been sent, mowve the

nop ; contents from 3HIFT register to output latch

bect Latch

endn

An example of how to use the HC595 macro is given in the following program. Data from variable
TX is serially transferred to shift register. LEDs connected to the parallel output of the shift
register will indicate the state of the lines. In this example value OxCB (1100 1011) is sent so that
the eighth, seventh, fourth, second and first LEDs are illuminated.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (6 of 7) [4/2/2003 16:19:01]

Chapter 6 - Samples

|| Program: HCS595.ASM|

sEFFFE Wicrocontroller configuration and declaration *%%%%

PEOCESZ0NE 1a6f84d
ginclude "plefid.inc™

__CONFIG CP_OFF & WDT OFF & PURTE ON & T 03C

sFFEEE Declaring the wariabhleszs *#*%%

Chlaock Ox0OC ; Beginning of RAM

TX r Belongs to function "HCL9L™
CountiPI

endc

sFFEFE Declaring the hardware *%*#*%
gdefine Data PORTA,D
gdefine Clock PORTA,L
gdefine LatchPORTA,Z

FEFEET Btructure of program mWemary FEEEE

OR Ox 00 ; Reset wvector
o to Main
ORI Ox04 ; Interrupt wector
o to Main ; There is no interrupt routine
#include "bank.inc"™ s Azsistant files
#ginclude "hci95.inc™
Main ; Begimming of the program
BANEL
movlw b 000110007 s Port A initialization
movwE TRISL ; TRIGA <- 0Oxl&
BANED
clrf PORTA ; PORTA - 0x00
mowlw Oxch ; Fill the Tx buffer
moviwE TH ; Tw <= '11001011"
HC595 Tx, CountiPI
Loop o to Loop ; Atay here
End ; End of program

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. Al Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_08Poglavlje.htm (7 of 7) [4/2/2003 16:19:01]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

The segments in a 7-segment display are arranged to form a single digit from O to F as shown in
the animation:

We can display a multi-digit number by connecting additional displays. Even though LCD displays
are more comfortable to work with, 7-segment displays are still standard in the industry. This is
due to their temperature robustness, visibility and wide viewing angle. Segments are marked with
non-capital letters: a, b, c, d, e, f, g and dp, where dp is the decimal point.

The 8 LEDs inside each display can be arranged with a common cathode or common anode. With a
common cathode display, the common cathode must be connected to the OV rail and the LEDs
are turned on with a logic one. Common anode displays must have the common anode connected
to the +5V rail. The segments are turned on with a logic zero.

The size of a display is measured in millimeters, the height of the digit itself (not the housing, but
the digit!). Displays are available with a digit height of 7,10, 13.5, 20, or 25 millimeters. They
come in different colors, including: red, orange, and green.

The simplest way to drive a display is via a display driver. These are available for up to 4
displays.

Alternatively displays can be driven by a microcontroller and if more than one display is required,
the method of driving them is called "multiplexing.™

The main difference between the two methods is the number of "drive lines." A special driver may
need only a single "clock™ line and the driver chip will access all the segments and increment the
display.

If a single display is to be driven from a microcontroller, 7 lines will be needed plus one for the
decimal point. For each additional display, only one extra line is needed.

To produce a 4, 5 or 6 digit display, all the 7-segment displays are connected in parallel.

The common line (the common-cathode line) is taken out separately and this line is taken low for
a short period of time to turn on the display.

Each display is turned on at a rate above 100 times per second, and it will appear that all the
displays are turned on at the same time.

As each display is turned on, the appropriate information must be delivered to it so that it will give
the correct reading.

Up to 6 displays can be accessed like this without the brightness of each display being affected.
Each display is turned on very hard for one-sixth the time and the POV (persistence of vision) of
our eye thinks the display is turned on the whole time.

All the timing signals for the display are produced by the program, the advantage of a
microcontroller driving the display is flexibility.

The display can be configured as an up-counter, down-counter, and can produce a number of
messages using letters of the alphabet that can be readily displayed.

The example below shows how to dive two displays.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (1 of 5) [4/2/2003 16:19:03]

Chapter 6 - Samples

T1 T
WFQ 1NED
I
Fl Kl 8] b 9| Fl K| 8] b
+ov] S . | I
Oraz R [— — -:?a
: i 0 70] |00
g [Jr# RO ——ahthiz
£]] - L
[rearock osct [f— | 0 7 o 7
; lES 2{ e, OF =l
Sl —ws 16F84 v [T e| d K |:|q: e df K l:l q,l
w -k [1y |
—{|REMNT RET | —T——
T 1z 300
—{|rE1 Re6 | —T—1
2 LRI &1y
—|rE2 RES [J———
= @ 10 530t
RE3 FE4] —T——
3300
3300
3300t
3300t

Connecting a microcontroller to 7-segment displays in multiplex mode

File Led.inc contains two macros: LED_Init and LED_Disp2. The first macro is used for display
initialization. That is where display refreshment period is defined as well as microcontroller pins
used for connecting the displays. The second macro is used for displaying numbers from 0 to 99
on two displays.

Macro LED_Disp2 has one argument:

LED_Disp2 first macro

first is the number from 0 to 99 to be displayed on Msd and Lsd digit.
Example: LED_Displ2 0x34

Number 34 will be shown on the display

Realization of a macro is given in the following listing.

A

;**#** Macros *&&%%+

Macro: LED.INC

LED Init macra
call InitPorts
call InitTimers
erdm

LED Dispz macro prvi
movlw prvi
wovwE L0
call UpdateDisplay
etidm

;Wﬁ?f?f?f Suhprn grams TEFEET

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (2 of 5) [4/2/2003 16:19:03]

Chapter 6 - Samples
endm

;**#** S'uhprl:lgramﬂ FTEFEEF

InicPorcs
BANEL
clrf LEDtri=sa
clrf LEDtrisE
BANED
clef LEDporth
clrf LEDportE
b=t LEDporta,s
FETUERN

InitTimers
BANE]L
mowlw B'l0000100!
mnovwE OPTION REG
BANED
mowlw B'O0l00000!
movwE INTCON
wovlw .96
movwE THMED
EETFIE

ISR bef INTCON,GIE
btfsc INTCON,GIE
goto I5R
movlw .96
wowwE THRO
bef INTCON,TOIF
call TUpdateDisplay
RETFIE

TpdateDizplay
mow LEDporth 10
clrf LEDportd
andlw 0x0£
wovwE TewmpC
b=t TenpC, 4
rrt TenpC ,F
btfss STATUS,C
bet TempC,3
btfsc TenpC,0

goto TpdateM=d

Tpdatel=sd
call ChkM=zdzZero
btf=zs &HTATUS,Z
mow it Lo,
andlw 0Ox0f
gota Displayluc

TpdateM=d
swapf Lo,
andlw 0Ox0f
btfsc ATATUS,=Z
mowvlw Ox0a

DisplawOut
call LedTahle
movwE LEDportE

JEEEEE Thnrterrupt REoutine *%+%+%%

-

"
r

Pins R40-4 are output
Port B iz output

3et all outputs to 07
i
Turn on M5D display

Mowe the prescaler to THRO
ps = 32

Enable TMRO interrupt

Jtart the timer

Disahle all interrupts
Check whether they are disabled

Initiali=ze the TMRO

Erase the int. (initiali=ation) flag
"Refresh™ the display

Display status -> W register

Turn off all 7-sequent displays
SJeparate the lower hal fhyte

Jave display status in TempC
Beginning =tatus of L=d display
et the status of the next display
c=l 7

If not, turn off the Lad display
If it is, check the status of M=d
display

If it i=s turned on, display the M3D
digit of the mmber

wsd = 0 72
If it i=s, =kip
Third Lsd digit -> w
£
Show it on the display

M=d figqure ->= T
£

msd '= 0 =2

If it i=, =kip

r Take the mask for a digit

Set the mask on port B

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (3 of 5) [4/2/2003 16:19:03]

Chapter 6 - Samples

DizplavyOut
call LedTable
movwf LEDportE
movE TempC, I
movwt LEDportd
BEETUEN

LedTahle

addwf PFCL, F

retlm B'oolllillnl!
retl B'ooooolio!
retly B'ololioll!
retlm BE'oloolilinl!
retly Brolloorlio
retl BE'ollollol!
retly B'ollliinol!
retlm B'ooooollinl!
retl BE'o0lllllll!
retly B'ollollll!
retly Eroooooooao?

ChkM=dZero
mowE Lo,w
btfss STATUS, 2
RETUEN
retlw 10

» mask for digit
: mask for digit
r mazk for digit
» mask for digit
r mask for digit
: mask for digit
; mask for digit
» mask for digit
: mask for digit
r mazk for digit

; Take the mask for a digit

et the mask on port bB

: Turn on displays

W0 1M s L= O

Checking the leading =zero

r Mad figure -= W

= 0 7 zkip
If it is, skip
If not, go back from 10 to W req

The following example shows the use of macros in a program. Program displays number '21' in

two 7-segment digits.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (4 of 5) [4/2/2003 16:19:03]

Chapter 6 - Samples

H Program: LED.AZM —

JEEFF% Declaring and configuring a microcontroller *%%+%

FEOCEIR0ER 1lofgd

ginclude "plefsd.inc”™
__ CONFIG CP OFF & WDT OFF & PWRTE ON & ®T 03C

pFF%F*E% Declaring the wariahles *##*#**

Chlock 0xOC ! Beginning of RaM

TenpC ; Belongs to macro "LED Dispz"
TemnpD

TenpE

Count

HI

Lo

endc

JEF*% Declaring the hardware *%%+%#

LEDtrizi Jup bl TRIZA
LEDportd & FORTA
LEDtrisE & TRIZE
LEDportE equ FORTE

JERFEY Program memory sStructure FEEEw

ORG 0x=0n r Reset wector
goto Main

ORG Ox04d ; Interrupt wector
goto I5R !} Interrupt routine iz found
; in led.inc file
#ginclude "hank. inc™ ; Aszistant file
#ginclude "led.inc™
Main ; Beginning of the program
LED Init
LED Dispz 0=l ; Display on two 7-segqument displays
; Mumber 21"
loop goto loop ; Stay in the loop
End ; End of program

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_09Poglavlje.htm (5 of 5) [4/2/2003 16:19:03]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Table of contents Chapter overview Next page

More microcontroller devices are using 'smart
LCD® displays to output visual information. The
following discussion covers the connection of a
Hitachi LCD display to a PIC microcontroller.
LCD displays designed around Hitachi's LCD
HD44780 module, are inexpensive, easy to use,
and it is even possible to produce a readout
using the 8 x 80 pixels of the display. Hitachi
LCD displays have a standard ASCII set of

characters plus Japanese, Greek and
mathematical symbols. A 16x2 line Hitachi HD44780 display

Each of the 640 pixels of the display must be accessed individually and this is done with a number
of surface-mount driver/controller chips mounted on the back of the display. This saves an
enormous amount of wiring and controlling so that only a few lines are required to access the
display to the outside world. We can communicate to the display via an 8-bit data bus or 4-bit
data bus.

For a 8-bit data bus, the display requires a +5V supply plus 11 1/0 lines. For a 4-bit data bus it
only requires the supply lines plus seven extra lines. When the LCD display is not enabled, data
lines are tri-state which means they are in a state of high impedance (as though they are
disconnected) and this means they do not interfere with the operation of the microcontroller when
the display is not being addressed.

The LCD also requires 3 "control" lines from the microcontroller.

The Enable (E) line allows access to the display through R/W and RS lines. When this line is low,
the LCD is disabled and ignores signals from R/W and RS. When (E) line is high, the LCD checks
the state of the two control lines and responds accordingly.

The Read.Write (R/W) line determines the direction of data between the LCD and microcontroller.
When it is low, data is written to the LCD. When it is high, data is read from the LCD.

With the help of the Register select (RS) line, the LCD interprets the type of data on data lines.
When it is low, an instruction is being written to the LCD. When it is high, a character is being
written to the LCD.

Logic status on control lines:

E 0 Access to LCD disabled
1 Access to LCD enabled

R/W 0 Writing data to LCD
1 Reading data from LCD

RS O Instruction
1 Character

Writing data to the LCD is done in several steps:

Set R/W bit to low

Set RS bit to logic O or 1 (instruction or character)
Set data to data lines (if it is writing)

Set E line to high

Set E line to low

Read data from data lines (if it is reading)

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (1 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples

Reading data from the LCD is done in the same way, but control line R/W has to be high. When we
send a high to the LCD, it will reset and wait for instructions. Typical instructions sent to LCD
display after a reset are: turning on a display, turning on a cursor and writing characters from left
to right.

When the LCD is initialized, it is ready to continue receiving data or instructions. If it receives a
character, it will write it on the display and move the cursor one space to the right. The Cursor
marks the next location where a character will be written. When we want to write a string of
characters, first we need to set up the starting address, and then send one character at a time.
Characters that can be shown on the display are stored in data display (DD) RAM. The size of
DDRAM is 80 bytes.

Ciz RAM .
The LCD display also possesses 64 bytes of Character- address Bit map Data
Generator (CG) RAM. This memory is used for characters
defined by the user. Data in CG RAM is represented as an 8- 0000 CJMCIEC 01010
bit character bit-map. oo OJOMO0O 00100
Each character takes up 8 bytes of CG RAM, so the total o010 CJHEBEC] 01110
number of characters, which the user can define is eight. In o011 OO0 m 1000

order to read in the character bit-map to the LCD display, we 0100 10000
must first set the CG RAM address to starting point (usually 0101 W00 10001
0), and then write data to the display. The definition of a WOCIC

'special’' character is given in the picture . 0 CONMENEC 0110

0111 OO0 00000

Before we access DD RAM after defining a special character, the program must set the DD RAM
address. Writing and reading data from any LCD memory is done from the last address which was
set up using set-address instruction. Once the address of DD RAM is set, a new written character
will be displayed at the appropriate place on the screen.

Until now we discussed the operation of writing and reading to an LCD as if it were an ordinary
memory. But this is not so. The LCD controller needs 40 to 120 microseconds (uS) for writing and
reading. Other operations can take up to 5 mS. During that time, the microcontroller can not
access the LCD, so a program needs to know when the LCD is busy. We can solve this in two
ways.

Set DD RAM address
FS|RM| DB DB | DBES|DB4 | DB3| DEZ| DB1| DEO
0 0 1 AL A A | A | A A A

Set CG RAM address
RS RAY| DEY|DBE|DBES| DBA|DE3| DE2| DBE1| DBEO
0 0 a 1 LN A A | A A | A

Write in data to RAM
RS RAY| DEY|DBE|DBES| DBA|DE3| DE2| DBE1| DBEO
1 0 D D D D O D D D

Read data from RAM
Fs| B OB\ OBs | DBES|DBA|DE3|DEZ2| DB1| DEOD
1 1] D D O D D D O

A—=address D=data

One way is to check the BUSY bit found on data line D7. This is not the best method because

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (2 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples

LCD's can get stuck, and program will then stay forever in a loop checking the BUSY bit. The other
way is to introduce a delay in the program. The delay has to be long enough for the LCD to finish
the operation in process. Instructions for writing to and reading from an LCD memory are shown
in the previous table.

At the beginning we mentioned that we needed 11 1/0 lines to communicate with an LCD.
However, we can communicate with an LCD through a 4-bit data bus. Thus we can reduce the
total number of communication lines to seven. The wiring for connection via a 4-bit data bus is
shown in the diagram below. In this example we use an LCD display with 2x16 characters, labelled
LM16X212 by Japanese maker SHARP. The message ‘character’ is written in the first row: and two
special characters '—' and '}' are displayed. In the second row we have produced the word
'mikroElektronika’.

RAO 3:*,&)
IS xR N A RN

16F84 Wjﬁv I -—% |-::||h”a||r"a"c”'\:”e"r" ”m”}" " ” || | N »
i j\ e R e e Tl 3 .
2] 2 AN
po{ T \ Q' 99000000090808 - A

Connecting an LCD display to a microcontroller

File LCD.inc contains a group of macros for use when working with LCD displays.

L!I Makro: LCD.INC |—
JE%F%F%% Declaring hardware #%%%%
B3 el 1 ; 3ignal Register 3elect
RIr el 2 } Signal Read/Write
EN equ 3 ; 3ignal Enable Output / "CLE"™

;'ﬂ".\".\'?fﬂ' LCD commands F#F+&+&
CONSTANT LCDEMS = b'0O01l0000° ; G-bit mode, Z lines
CONSTANT LCDDE = b'lO000000° ; write 0 to DDEALM
CONSTANT LCDEM4 = b'00100000° ; 4-bit mode, Z lines

sEF%FF® Artandard commands for LCD initialization %% | HI- / LO-NIEELE)

CONSTANT LCDZL b'oololooo' ; function: 4 bit 2 lines
CONSTANT LCDCONT = b'00001100' ; Display control: Display 0N,

; Cursor OFF,blinking Cursor OFF
b'oololooo' » display mode: Autolncrement

; Cursor, NoDisplavhutoihift

CONSTANT LCDSH

suF%ww Standard LCD commands &FFFF

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (3 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples

JFFww Standard LCD commands FFF%F

!In order to send one of these commands to LCD,
sfunction, ex. "LCDcmd LCDCLE™

CONSTANT LCDCLR

b'oooooool' r clears

CONSTANT LCDL1 = k'loo00aoon' @ select
CONSTANT LCDLZ = h'llo0o0ono' : select

;***#* Macros *&%FF*

LCDinit macro

endm

; LCD
movly LCDardg

call LCDdata
endn

LCDwr macro
call LCDdata
endmn

movly LCDcocommatd
call LCDcond
endmn

LCD 1line macra line hum
IF {line num == 1]

; lnstruction
ELSE
IF {line num == =)

} instruction
EL3E
ENDIF
ENDIF
endm

LCD_DDadr macro DDRamdddress

IF (DDRambddress > 0x67)

EL3E

movlw walue
call LCDcomd
ENDIF
endm

CONSTANT LCDSH = b'a0loloont ; diszplay mode: Autolncrement
; Cursor, NoDisplayhuto3hift

we need to uze LCDcomd

dizplay, resets the

; Cursor

CONSTANT LCDCH = h'00000010"' ; cursor to the beginning

CONSTANT LCDCE = h'00000110"' ; moving cursor to the right

CONSTANT LCDCL = b'a0000lo0' ; movihg cursor to the left

CONSTANT LCDSL = b'a0011000" ; mowve the display contents to
; the left

CONSTANT LCDSER = b'00011100" ; mowve the display contents to

; the right

the first line
the second line

call LCD_jnit ; LCD initialization

LCDchar macra LCDarg } write out the character on

LCDcmd macro LCDcommand s send the command to LCD

LCDcmd LCDLL 5 Srtart the macro with "First Line™

LCDcmd LCDLZ ; Start the macro with "Jecond Line™

Local walue = DDRambddress | b'l0000000°7 ! beginning of

; DDRAM

EFROR "Wrong DDEAM address in LCD DDAdr"

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (4 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples

LCD CGadr

call LCDcomd
ENDIF
endm

macro CGRambddress

Local walue = CGRambddress | b'0l000000°7 ; Beginning of
; CGRAM-a

IF [(CGRambddress > b'00111111'")

ERROR "Wrong DDEAM address in LCD CGAAr"
ELSE

movlw walue

call LCDcomd

ENDIF
endn

;'ﬂ".\' TEY Suhprngr ams wEEEE

LCDcomd clrf LCDbut
goto LCDwr

LCDdata clrf LCDbut
bsf LCDbuf,R3

LCDwr mowvwf LCDtemp
andlw bh'l1l1110000°
iorwf LCDbuf, 0
movwE LCDport
call LCDclk
clrf LCDport
awapf LCDtemp , 0O

andlw bh'l1l1110000°
iorwf LCDbuf, 0
movwE LCDport
call LCDclk
clrf LCDport
RETTIEN

LCDclk WAITK 0Ox0l, 0x00

bef LCDport ,EN
bef LCDport EN
WAIT 0Ox0l
EETURN

LCD _init
clrf LCDport
BANE]L
clrf OPTION REG
mowlw bh'Oo0oaoooo!
mowvwE LCDtris
BaNEQD
WaIT 0O=x0l
mowvlw LCDEMS
movwE LCDport
call LCDclk
clrf LCDport
WaIT 0«0l
mowvlw LCDDE
wovwf LCDport
call LCDclk
clrf LCDport
mowlw LCDEM4
movwE LCDport

.
L

clear Data Flaqg

zet Data Flag

Command / Data in Temp

zet aside the upper halfhyre

et aside Data Flag

zend the upper halfbyte to PORTE

exchange the upper and lower halfhyte
places again

zet aside the lower halfhyre

et aside the Data Flag

send the low halfbyte to PORTE

Enable access to LCD for data and
comnmandzs to bhe written in

prepare LCDport

START INITIALIZATION
start with "3-bit mode™

write 0 in DDE&AM

go to 4 bit mode

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (5 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples

Cdll LU
clrf LCDport
mowlw LCDEM4 P go to 4 bit mode

movwE LCDport
call LCDhclk
clrf LCDport

LCDecmd LCDZEL ; function: 2 lines, 4d-bit mode

LCDend LCDCONT ; display 0N, no cursor
LCDecmd LCDSH ; Mode displaving dutolnc, Nolutoihift
LCDemd LCDCLE ; clear display, address counter to Zero
call LCD=specialChars } read in characters defined by the user

;Lo CGRAM

RETUEN

LCD=specialChars ;o maximum number of characters

; that user can define is 8
; ¥%*% first special character iz "E™ at the position 0x00 *+%
» %%% iz palled frowm "LCDchar Ox00™ *+¥

LCD_Cioadr 0x00 : send CGRAM address
LCDchar b'Oo0O0OL010¢ ; write data to CGEAM address
LCD_Citadr 0x0l

LCDchar b'Oo0oooloo!

LCD_Cioadr 0x0Z

LCDchar b'OOQoO0O1l110°

LCD_Chadr 0x03

LCDchar b'OQ0l0001°

LCD Chadr 0x04

LCDchar b'oQoloaoon!

LCD_Chadr 0x05

LCDchar b'O0o0loool!

LCD Chadr 0x0a

LCDchar b'O00O01110°

LCD_CGadr 0x07

LCDchar b'oooooooo!

; *%% gecond special character is & at pozsition Ox01 ***
; *%% iz called from "LCDchar 0Ox01™ *#+%%

LCD_CGadr 0Ox08 : send CGRAM address
LCDchar b'OOOOOOL1O! ; write data to CGEAM address
LCDchar b'00000CL0O0°

LCD_CGadr 0x0&

LCDchar b'O0001110°

LCD_CGadr 0x0E

LCDOchar bh'00010001°

LCD_CGadr 0x0C

LCDOchar h'00010000°

LCD_CGadr 0x0D

LCDOchar bh'00010001°

LCD CGadr Ox0OE

LCDOchar bh'00001110°

LCD CGadr 0xOF

LCDchar b'O0ooCooo!

LCD DD adr Ox00 ; reset DDRAM

RETUEN

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (6 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples

LCDinit macro used to initialize port connected to LCD. LCD is configured to work in four-bit
mode.
Example: LCDinit

LCDchar LCDarg Write ASCII character. Argument is ASCII caracter.
Example: LCDChar ‘d

LCDw Write character found in W register.
Example: moviw 'p’
LCDw

LCDcmd LCDcommand Sending command instructions
Example: LCDcmd LCDCH

LCD_DDAdr DDRamAddress Set DD RAM address.
Example: LCD_DDAdr .3

LCDIline line_num Set cursor to the beginning of 1st or 2nd row
Example: LCDline 2

When working with a microcontroller the numbers are presented in a binary form.

As such, they cannot be displayed on a display. That's why it is necessary to change the numbers
from a binary system into a decimal system so they can be easily understood. Listings of two
macros LCDval_08 and LCDval_16 are given below.

Macro LCDval_08 converts an eight-bit binary number into a decimal number from O to 255 and
displays it on the LCD display. It is necessary to declare the following variables in the main
program: TEMP1, TEMP2, LO, LO_TEMP, Bcheck. An eight-bit binary number is found in variable
LO. When a macro was executed, the decimal equivalent of its number would be displayed on the
LCD display. The leading zeros before the number will not be displayed.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (7 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples

|| Makro: LCDvOS. INC

:_'.\'ﬂ' *%% Macros FTEEFEE

LCD+ral 0S macro
call LCDwral0s
endm

:_7?* TET Suhprugr ams wEEwWF

LCDwal0s
movtfw LO
movwt LO_TEMP
clrf Echeck
mowlw d'100!7
mowvwE TEMPZ
call Vil cnw
mowluw d'10!
mowvwE TEMPZ
call Vil crw
mowlw d4d'l!
movwEt TEMPZ
bsf Echeck, 0
call Vil cnw
RETUEN

ValLeonw clrf TEMP1
mowfw TEMPZ

YaLcO0l subwf LO_TEMF, O
skpc
goto LCDwals
incf TEMPL,1
mowfw TEMPZ
subwt LO_TEMP,1
bsf Echeck, 0
goto ValLecol

LCDwals mowlw'0!
addwf TEMPL,0
btf=s=s EBEcheck,O
mowvlw !

LCDwr

RETUEN

Macro LCDval_16 converts 16-bit binary number into decimal number from O to 65535 and
displays it on LCD display. The following variables need to be declared in the main program:
TEMP1, TEMP2, TEMP3, LO, HI, LO_TEMP, HI_TEMP, Bcheck. A 16-bit binary number is found in
variables LO and HI. When a macro was executed, a decimal equivalent of this number would be
displayed on LCD display. The leading zeros before the number would not be displayed.

H Macro: LCDwle. INNC
| pEEEEE Macrog FEEEH
LCDwal 16 macro

call LCDwalle

erdmn

;***#* S'uhprngrams FTEEEN

LCDwalla
mowEw Lo

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (8 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples

h—p = g ———

LCDwalle
mowEw Lo
mo e LO_TEMF
mo i HI
mo e HI_TEMF
clrf Bcheck

mo w1 b'oooloooo!
movoE TEMPZ
mowlnr b'OoQloollle
mo st TEMES

call Valonw

mowl b'lllolooo!
mo st TEMEP:

mo L bh'ooooooll!
o vt TEMEP:

call Valeonw

mo L h'ollooloo!
o e TEMF:Z

clrf TEMP 3

call Valonw

mowlur b'opaololo
o e TEME:

clrf TEMP 3

call Valonw

mow 1w b'oooooool!
moviE TEMFP =

clrf TEMFP3

batf Echeck, O

call VaLornw
RETUEN

YiaLonw clr£ TEMF1
Wonwl nmowviw TEMFP 3
subwt HI_TEMFP,O

skpc
goto LCDwal 2
bn= Vorwa

mow fur TEMFPZ
subwt LO_TEMFP,0O
skpc

goto LCDwal 2

Veonws mowviw TEMF 3
subwt HI TEMP,1
mowEw TEMFP =
subwt LO0_TEMP,1

skpc

dect HI TEMF,1
inct TEMFP1,1
bsf Echeck, O
goto Venwl

LCDwals mowlw ot
addwt TEMF1,0
btfs=s Bcheck, 0
mow 1w Pt
LCDwr

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (9 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples

btfs=s Becheck, 0
mow 1 ot
LCDw

FETURN

The main program is a demonstration of using the LCD display and generate new characters. At
the beginning of a program, we need to declare variables LCDbuf and LCDtemp used by
subprograms for the LCD as well as the microcontroller port connected to the LCD.

The program writes the message 'characters:' on the first row and shows two special characters
'~"and '}'. In the second row, 'mikroElektronika’ is displayed.

H Program: LCD.L2M —

;ttttt
PEOCESS0R 16£54
#include "plefsd, inc”
_ CONFIG CP OFF & WDT OFF & FPURTE ON & ®T 0O3C

EEEENT
L

Chlock 0Ox0C
LCDbut
LCDtenp
WCYCLE
PRESCwait
Pointer
endo

EETEL
L

LCDtriz equ TRIZE
LCDport equ PORTE

sEAEEE
r

ORG Q=00
goto HMain

ORG 0x04
goto Main

Poruke

mowrE PCL
Porukal dt "mIERoEleEtrOnIki™
Eraj

#include "bank.inc™
#include "wait.inc”
#include "led.inc”

#ginclude "print.inc”™

Main

LCDvinit
LCDchar 'E!
LCDchar 'a!
LCDchar 'r!
LCDchar 'a!
LCDchar 'k!
LCDchar 't!
LCDchar 'e!
LCDchar 'r!
LCDchar 'i!

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (10 of 11) [4/2/2003 16:19:08]

Chapter 6 - Samples
LLycpar oo

LCDchar 'e!
LCDchar 'r!
LCDchar 'i!
LCDchar ':!
LCDchar ' !

LCD char 0=x00
LCDchar 0Ox01

LCD1ine 2
FEINT Poruke, Porukal, EKEraj, Pointer, LCDw

Loaop goto Loaop

End

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://iww.mikroelektronika.co.yu/english/product/books/PICbook/6_10Poglavlje.htm (11 of 11) [4/2/2003 16:19:08]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Table of contents Chapter overview Next page

Since everything in the microcontroller world is represented with "0's" and "1's", how do we cater
for a signal that is 0.5 or 0.77?

Most of the world outside a computer consists of analogue signals. Apart from speech and music,
there are many quantities that need to be fed into a computer. Humidity, temperature, air
pressure, colour, turbidity, and methane levels, are just a few.

The answer is to take a number of digital lines and combine them so they can "read" an analogue
value. An analogue value is any value between 0 and 1. You can also call it a "fractional value."
All the above quantities must now be converted to a value between 0 and 1 so they can be fed
into a computer.

This is the broad concept. It becomes a little more complex in application.

If we take 8 lines and arrange than so they accept binary values, the total count will be 256 (this
is obtained by a count to 255 plus the value 0).

If we connect these 8 lines into a "black box," they will be called output lines and so we must
provide a single input line. With this arrangement we can detect up to 255 increments between
"0" and "1." This black box is called a CONVERTER and since we are converting from Analogue to
Digital, the converter is called an A-to-D converter or ADC.

AD converters can be classified according to different parameters. The most important
parameters are precision and mode of data transfer. As to precision, the range is: 8-bit, 10-
bit, 12-bit, 14-bit, 16-bit. Since 12-bit conversion is an industrial standard, the example we have
provided below was done with a 12-bit ADC. The other important parameter is the way data is
transferred to a microcontroller. It can be parallel or serial. Parallel transmission is faster.
However, these converters are usually more expensive. Serial transmission is slower, but in terms
of cost and fewer input lines to a microcontroller, it is the favourite for many applications.
Analogue signals can sometimes go above the allowed input limit of an ADC. This may damage the
converter. To protect the input, two diodes are connected as shown in the diagram. This will
protect from voltages above 5V and below 0V.

In our example we used a LTC1286 12-bit ADC (Linear Technology). The converter is connected to
the microcontroller via three lines: data, clock and CS (Chip Select). The CS line is used to select
an input device as it is possible to connect other input devices (eg: input shift register, output shift
register, serial ADC) to the same lines of the microcontroller.

The circuit below shows how to connect an ADC, reference and LCD display to a micro. The LCD
display has been added to show the result of the AD conversion.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (1 of 6) [4/2/2003 16:19:11]

Chapter 6 - Samples

Protection

G diodes et
: +50 /
S — Y |~
_[Uraf W]J , v, "
Analogue mpul & 10 cax[] 25 G 1=
" el | [res R [———antHz
| = _I 1 16
— Jenr] o E RANTOCKL 930 1|—_g_—l5 I=_I
L L LTe1286 Lo—|/m gy oscz
Ll 14 43 =
Vin = from 7 to a0 ™ Tl _E““ 1684 wid],:-
a—Jwr [Eiu —= [Jremnt RET [F——
[Jreur Mot 2l 12
oo ey VOUISY — 1 REGL—
_|__[—|rE: RES| —
= REFDZ = I.itnsx realT.

(TR

-
q
J

AT,

N

MRS

BENdALUS0H35940000

o] lele ol | -] e lek 5]

N\

—_—rrrr;s;m

o'y

—
1AL LILT,

0

Connecting an AD converter with voltage reference to a microcontroller

The Macro used in this example is LTC86 and is found in LTC1286.inc file.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (2 of 6) [4/2/2003 16:19:11]

Chapter 6 - Samples

H Macro: LTC1Z86.IMNC |—

LTC86 macro War LO, Var HI, Var

Local Loop
Local Loopl

clrf War LO
clrf WVar HI
mowlw .4
movwE Var

bof (]

call CLE
call CLE
call CLE

Loop rlt War HI,f
btfzz Data
bcf War HI,0
btf=zc Data
bsf War HI, 0
call CLE
decfs= Var,f
goto Loop
wowvlw .8
wovwE War

Loopl rlf Var LO, £
btfzs Data
bcf Var L0O,0
btfsc Data
baf Var LO,0
call CLE
decfaz Var,f
go to Loopl
bsf Ca
endm

CLE bsf Clock
nop
nop
hop
beof Clock
EETUEN

The LTC86 Macro has three arguments:
LTC86 macro Var_LO, Var_HI, Var

Var_LO variable is where the result of lower byte conversion is stored
Var_HI variable is where the result of higher byte conversion is stored
Var loop counter

Example: LTC86 LO, HI, Count

The four bits of the highest value are in variable HI, and first eight bits of conversion result are in
variable LO. Count is an assistant variable to count the passes through loops.

The following example shows how macros are used in the program. The program reads the value
from an ADC and displays it on the LCD display. The result is given in quantums. Eg: for OV the

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (3 of 6) [4/2/2003 16:19:11]

Chapter 6 - Samples

result is O, and for 5V it is 4095.

&

Program: LTC1l:256.INC

__CONFIG CF OFF & WDT OFF & PURTE ON & XT 030

:_1:1.' THEE

PROCESA0R 16£54

#ginclude "plef8d.inc™
:_1:1.' THEE

Chlock 0Ox0OC

LCDhuf

LCD temp

WCFCLE

PEESCwait

TEMFL

TEMFPZ

TEMFP3

Lo

HI

LO_TEMF

HI TEMF

Echeck

Count

Pointer

endc
;'.\'ﬂ".\'?rﬂ'

#define Data PORTA,O

#define Clock PORTA,1

#gdefine C3 PORTA, 2

LCDtrizs equ TRISGE

LCDport equ PORTE
;*ﬂ't#ﬂ'

ORG 000

goto Main

OEG D04

goto Main
Messages Dovwt PCL
Messageld dt ™ LTCLl286 *7
Messagel dt "A/D rezul.:”
Kraj

#ginclude "bank.inc™

#ginclude "ltclZde. inc™

#ginclude "wait.inc™

#include "leod.inc™

#ginclude "lcdwle.inc™

#include "print.inc”
Main

BANE1

mowlr Oxfl

o s TEISA

BANED

L0 TEHMF

HI TEHMF

Echeck

Count

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (4 of 6) [4/2/2003 16:19:11]

Chapter 6 - Samples

UL R A B N)

HI TEMF
Echeck
Count

Pointer

endc
;wwwww

#define Data PORTA,O
#define Clock PORTA,1
#gdefine C3 FPORTA, 2
LCDtrizs equ TRISGE
LCDport equ PORTE

;**t##
ORG Q=00
goto Main
ORG 0=x04

goto Main

Measgages novwE PCL
Messaged dr "% LTCLlZ8g *7
Messagel dt "4,D rezul.:”
Kraj
#ginclude "bank.inc™
#ginclude "ltclZde. inc™
#ginclude "wait.inc™
#include "leod.inc™
#ginclude "lcdwle.inc™
#include "print.inc”
Main
BANE1
mowlr Oxfl
o s TEISA
BANED

LEDinit

clrf PORTA
LCD_DDadr .3
FRINT Meszages, Messagel, Meszzagel, Pointer, LCDw

Loaop LTCE8e LO, HI, Count

call out
goto Loop

out
LCD1line 2

FRINT Messzages, Messagel, EndMsg, Pointer, LCDw
LCDwal 16

retiurn

End

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (5 of 6) [4/2/2003 16:19:11]

Chapter 6 - Samples

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. Al Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_11Poglavlje.htm (6 of 6) [4/2/2003 16:19:11]

mailto:office@mikroelektronika.co.yu

Chapter 6 - Samples

Table of contents Chapter overview Next page

SCI is an abbreviation for Serial Communication Interface and, as a special subsystem, it exists on
most microcontrollers. When it is not available, as is the case with PIC16F84, it can be created in
software.

Free line Free line
1 S
15:1:\-:
st e
] L '
T] 1 0 1 1 o n 1 IIIL T

data

As with hardware communication, we use standard NRZ (Non Return to Zero) format also known
as 8 (9)-N-1, or 8 or 9 data bits, without parity bit and with one stop bit. Free line is defined as
the status of logic one. Start of transmission - Start Bit, has the status of logic zero. The data
bits follow the start bit (the first bit is the low significant bit), and after the bits we place the Stop
Bit of logic one. The duration of the stop bit 'T' depends on the speed of transmission and is
adjusted according to the needs of the transmission. For the transmission speed of 9600 baud, T
is 104 usS.

. CD (Carrier Detect)

. RXD (Receive Data)

. TXD (Transmit Data)

. DTR (Data terminal Ready)
. GND (Ground)

DSR (Data Set Ready)

. RTS (Request To Send)

. CTS (Clear To Send)

. Rl (Ring Indicator)

Pin designations on RS232 connector

In order to connect a microcontroller to a serial port on a PC computer, we need to adjust the
level of the signals so communicating can take place. The signal level on a PC is -10V for logic
zero, and +10V for logic one. Since the signal level on the microcontroller is +5V for logic one,
and 0OV for logic zero, we need an intermediary stage that will convert the levels. One chip
specially designed for this task is MAX232. This chip receives signals from -10 to +10V and
converts them into O and 5V.

The circuit for this interface is shown in the diagram below:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (1 of 6) [4/2/2003 16:19:14]

Chapter 6 - Samples

11 T
HEHF
=bB-D g'l:lil'l _l: 1= - Weoe Re=et
connector an w |t
ricrocantroller =]~ ‘~'==]1
system e rau]] IR
H_J:—————fﬂé- ranf] ©
ELtL__—[GL MW:]
wiiiorwy i ranf]
! ? - [ﬂm: wn}———
E T[] —] ok
5 i' —
: EN Pl A2 T2
<
; 1
: Serial cable
o

(1 on 1)

Receives data [R¥)

Sends data [Tx)

—
=

l.hll\:llﬂ-'lﬁl\.-l'\ll-\.l':l"--

SUB-D 9-pin connector on PC

i K L

RO ™ Rn js
2 ik,
R, RP.]
2 1] o AhiHz
RiehTOCK] GBS :1|54|_'L—'| |
WCLR =
050z [J———
PIC — |
ws T6FB4) T
12
REQANT Hf]
RE RE j"-
i 8 |,
RE RE
5]
FE RE :1ID
3 4

Connecting a microcontroller to a PC via a MAX232 line interface chip.

File RS232.inc contains a group of macros used for serial communication.

Macro:

Al

EEEEE
-

EEEET
-

ASEND

macro

call

a1 A

#define Rxport
#define Ritris

CONSTANT LF
CONSTANT CR
CONSTANT TABE
CONSTANT BS

d'1o!
d'1l3!
d'at
d'ag!

;*ﬁﬁffff Macros #®&FFFF

B3232init macro
call
erdn

B3 init

d_string
mowlw 3 string
REND=ub

PORTE,
TRISE,

0
]

R3232 . INC

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (2 of 6) [4/2/2003 16:19:14]

Chapter 6 - Samples

SEND macro 3 string
mowlw 3 _string
call 3END=ub
erdm

SENDw macko
call SEND=uhb

erdn

FECEIVE macro
call FECzub
erdn

;1\'1\".\'7.’1‘ Suhprn grams TEEEN

B3 _init becf THport
BANE1
clrEt OFTION_REG
beof TKtris
bef BXtris
BANED
baf Txport
wowvlw b'lO0loooo!
mowwE TINTCON
EE TTIEN

SENDzub mowwf TxD
bect Txport
movlw Ox05
moviwE R3 TEMPL
call 3 _Wait
SENDa btfsc TxD .0
goto SENDHh
bef Txportc
goto SENDc
SENDb bst Txportc
ZENDc rrf =D ,1
call 3 _Wait
decfsz R3 TEMF1,1
goto SENDa
goto SENDA
SENDA bhst Txport
call 3 _Wait
call 3 Wait
FETURN

3_Wait mowlw 0Ox1E
movwt RS _TEMPZ
goto X _Wait

Fz Wait mowlw 0x0C
novyf R3_TEMPZ
goto X Wait

F_Wait mowlw 0x1D
movwtE R3_TEMP:Z
goto X Wait

_WMait decfsz R3_TEMFZ,1
goto X _Wait
RETURN

BEECsub call Es_Wait
btfsc ERExport
goto FEENTREY

mowvlw O0x08
™ AT ns TRWMDI

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (3 of 6) [4/2/2003 16:19:14]

Chapter 6 - Samples
btfsc ERExport
goto FEENTEY
movlw O0x05
mnovwE R3 TEMPL
goto FECa

FECa rcall R Wait
btf==z ERxport

goto EECH
bst FxD ,0x07
goto EECc

EECh hef BxD 0x07

FECc decfs= R3 TEMP1,0
rrf BxD,1
decfzz B3 _TEMP1,1
goto RECa
call R _Wait
btfss RXport
clrf RxD
EETUEN

FEENTEY clrf RXD
goto I3Rend

Using the macro:

RS232init Macro for initializing RBO pin and line for transmitting data (TX-pin).
Example: RS232init

SEND S_string Sending ASCII character. Argument is ASCII sign.
Example: SEND ‘g’

SENDw Sending data found in W register.
Example: moviw 't'
SENDw

RECEIVE macro in interrupt routine receives data for RS232 and stores it in RXD register
Example:

QORG Ox04
goto ISR

ISE het INTCON, GIE
htfsc INTCON, GIE
goto ISR
EECEIVE

I3Rend hbof INTCON, INTF
RETFIE

At the beginning of the main program, we need to declare variables RS_TEMP1, RE_TEMP2, TXD,
RXD and TX pin on microcontroller. After resetting a microcontroller the program sends a greeting
message to PC computer: $ PIV16F84 on line $, and is ready to receive data from RX line.

We can send and receive data from PC computer from some communication program. When
microcontroller receives data, it will send a message: Character received from PIC16F84: x, thus
confirming that reception was successful.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (4 of 6) [4/2/2003 16:19:14]

Chapter 6 - Samples

Main program:

Al

Program:

R3232. 45N

shEEEEN
-

PROCESS0OR 16f54
#include "plafad.inc”
__CONFIG _CP_OFF &« WDT_OFF & _FWRTE_ON & _XT 0O&C

hEEEEN
L

Chlock
B3 _TEMPL
B3 _TEMPZ
THD

BXD
Fointer
endc

0= 0C

Messages wovwE FPCL

Mez=sageld dt "RBeceived character from PIC16FS4™
Mez=zagel dt "5 PIC1EFE4 connected 57

Kraj
#include "bank.inc™
#include "rsZ3Z.inc”
#include "print.inc"

TEEEE

ISR bcf INTCON, GIE
btfsc INTCON, GIE
goto ISR
RECEIVE
SEND TAE

PEINT Meszsszages, Mezszagel, Messagel, Pointer, 3SENDw

mowEw BXD
SENDw

SEND CR
SEND LF
HEND LF

I3Rend becf INTCON,INTF
FETFIE

Main
B3E32init

PRINT Meszages, Messzsagel, EndMag ,
SEND CR
SEND LF
SEND LF

Fointer, SENDw

Loop goto Loop

End

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (5 of 6) [4/2/2003 16:19:14]

Chapter 6 - Samples
Loop gqoto Loop

End

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. Al Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/6_12Poglavlje.htm (6 of 6) [4/2/2003 16:19:14]

mailto:office@mikroelektronika.co.yu

Appendix A - Instruction Set

Appendix A

Instruction Set

Appendix contains all instructions presented separately with examples for their use. Syntax,
description and its effects on status bits are given for each instruction.

. A1l MOVLW
. A.2 MOVWEF
. A.3 MOVF

. A.4 CLRW

. A5 CLRF

. A.6 SWAPF

« A.7 ADDLW
. A.8 ADDWF
. A.9 SUBLW

. A.10 SUBWF
« A.11 ANDLW
« A.12 ANDWEF
. A.13 IORLW
.« A.14 IORWF
. A.15 XORLW
. A.16 XORWEF
« A.17 INCF

. A.18 DECF

« AL19 RLF

. A.20 RRF

. A.21 COMF

. A.22 BCF

. A.23 BSF

« A.24 BTFSC
. A.25 BTFSS
« A.26 INCFSZ
« A.27 DECFSZ
. A.28 GOTO

« A.29 CALL

. A.30 RETURN
« A.31 RETLW
. A.32 RETFIE
. A.33 NOP

« A.34 CLRWDT

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (1 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

. A.35 SLEEP

A.1 MOVLW Write constant in W register

Syntax: [labe!] MOYLW k

Description: 8-hit constant k is written in W register.
Operation: k= (W)

Operand: 0< k= 255

Flag: -

Number of words: 1
Number of cycles: 1

Example 1 MOVLW 0xEA
After instruction: Wl =0x 54
Example 2 MOVLW REGISTAR

Before instruction: W=0x10 and REGISTAR=0x40
After instruction: W=0x40

A.2 MOVWF Copy W to f

Syntax: [labe!] MOVWE £

Description: Contents of W register is copied to f register.
Operation: W=

Operand: 0O=f=2 127

Flag: -

Number of words: 1
Number of cycles: 1

Example 1 MOVYWF OPTION_REG

Before instruction: OPTION _REG=0x20
W' =040

after instruction: OPTIOM _REG=0x40
W=0x40

Example 2 MOVWF INDF

Before instruction: W=0x17

FSE=0xCZ2

address contents 0 C2=0=00
After instruction: W=0x17

FSE=0xCZ

address contents 0xXC2=0=17

A.3 MOVF Copy fto d

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (2 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: Vabal] MOVF f, d

Description: Contents of f register is stored in location determined by d operand.
If d=0, destination is W register.
If d=1, destination is f register itself.
Option d=1 is used for testing the contents of f register because
execution of this instruction affects Z flag in STATUS reqgister.

Operation: f={d)

Operand: 0O=<f= 127
d = [0,1]

Flag: z

Number of words: 1

Number of cycles: 1

Example 1 MOWYF FSE, O

Before instruction: FSR=0xC2
W =000

After instruction: W=0=C2
Z=0

Example 2 MOWVF INDF, O

Before instruction: W=0x17
FSR=0=CZ
address contents 0xC2=0=00
After instruction: W=0x17
FSE=0xCZ
address contents 0 C2=0=00
£=1

A.4 CLRW Write O in W

Syntax: [abeal] CLREW

Description: Contents of W register evens out to zero, and Z flag in STATUS
register is set to one.

Operation: 0= (W)

Operand: -

Flag:

il
Number of words: 1
Number of cycles: 1

Example CLRW

Before instruction: W=0xEE
after instruction: W =000

A5 WriteOin f

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (3 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: [labe!] CRLF f
Description: Contents of 'f' register evens out to zero, and 2 flag in status
register is set to one.

Operation: 0=f
Operand: 0<f= 127
Flag: z

Number of words: 1
Number of cycles: 1

Example 1 CRLF STATUS

Before instruction: STATUS=0xCZ
after instruction: STATUS=0=00
Z=1

Example 2 CLRF INDF

Before instruction: FSR=0xCZ2
address contents 0xC2=0x33
after instruction: FSR=0xC2
address contents 0xC2=0=00
£=1

A.6 SWAPF Copy the nibbles from f to d crosswise

Syntax: Uaba/] SWAPF £, d

Description: Upper and lower half of f register exchange places.
If d=0, result is stored in W reqgister.
If d=1, result is stored in f register.

Operation: F<0: 3 = d=d: 7>, f<4: 7> = d=0:3>;
Operand: 0=f= 127

d = [0,1]
Flag: -

Number of words:
Number of cycles:

1

1

Example 1 SWAP REG, O

Before instruction: REG=0xF3

after instruction: FRES=0xF3
W =0x3F

Example 2 SWAP REG, 1

Before instruction: REGS=0xF3
after instruction: FRES=0x3F

A.7 ADDLW Add W to a constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (4 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: [labe!] ADDLW k

Description: Contents of W register is added to 8-hit constant k and result is
stored in W register.

Operation: (W) + k=W

Operand: 0< k=255

Flag: c, DC, 2

AMumber of words: 1
MNumber of cycles: 1

Example 1 ADDLW 0x15

Before instruction: W=0x10
after instruction: W=0x2E5

Example 2 ADDLW REG

Before instruction: W=0x10
register contents REG=0x37
after instruction: W =047

A.8 ADDWF Add W to f

Syntax: [iabel] ADDWF f, d

Description: Add contents of register W to register f.
If d=0, result is stored in W register.
If d=1, result is stored in f register.

Operation: W) +i{fHh=d
d=[0,1]

Operand: 0=f= 127

Flag: C,DC, 2

Number of words: 1
Number of cycles: 1

Example 1 ADDWF FSR, O

Before instruction: W=0x17
FER=0xCZ2

After instruction: W=0x[Da
FSR=0=CZ

Example 2 ADDLW IMNDF, 1

Before instruction: W=0x17

FSE=0>C0

address contents 0xC2=0=20
After instruction: W=0x17

FSR=0=CZ

address contents 0xC2=0=37

A.9 SUBLW Subtract W from a constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (5 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: Uaba/] SUBLW k

Description: Contents of W register is subtracted from k constant, and result is
stored in W register.

Operation: k-(W) =W

Operand: 0< k=255

Flag: c, oc, 2

Number of words: 1
Number of cycles: 1

Example 1 SUBLW 0x03

Before instruction: W=0x01, C=x, Z=x
after instruction: W=0x02, C=1, Z=0 Fesult =0

Before instruction: W=0x03, C=x, Z=x
1 1

after instruction: W=0x00, C=1, Z= Fesult =0
Before instruction: W=0x04, C=x, Z=x
After instruction: W=0x=FF, C=0, Z2=0 Fesult < 0
Example 2 SUBLW REG
Before instruction: ‘\W=0x10

contents REG=0x37
After instruction: W=0x27

C=1 Result = 0
A.10 SUBWF Subtract W from f
Syntax: abal] SUBWF f, d
Description: Contents of W register is subtracted from the contents of f register.

If d=0, result is stored in W reqgister.
If d=1, result is stored in f register.

Operation: fy-{wW)=d
Operand: 0<f= 127

d = [0,1]
Flag: c, oc, Z

Mumber of words: 1
Number of cycles: 1

Example 1 SUBWF REG, 1

Before instruction: REG=3, W=2, C=x, Z=x
after instruction: REG=1, W=2, C=1, Z2=0 Fesult = 0
Before instruction: PREG=2, W=Z2, C=x, Z=x
after instruction: FEG=0, W=2, C=1, 2=1 Fesult =0
Before instruction: REG=1, W=2, C=x, Z=x
After instuction: REG=0xFF, W=2, C=0, Z2=0 Fesult < 0

A.11 ANDLW Logic AND W with constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (6 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: Uabal] aMDLW k

Description: Performs operation logic AND over the contents of W register and
constant k.
Result 1= stored in W register,

Operation: (W LAND., k= W

Operand: 0< k=255

Flag: z

Number of words: 1
Number of cycles: 1

Example 1 ANDLW 0Ox5F

Before instruction: W=0xA3 ; 0101 1111 {0x5F)
Aafter instruction: W=0x03 ; 1010 0011 {0xA3)

; 0000 0011 (0%03)

Example 2 ANDLW REG

Before instruction: W=0xA3 ; 1010 0011 {0=AZ)
REG=0%37 ; 0011 0111 (0%37)
after instruction: W=0x23

; 0010 0011 (0%23)

A.12 ANDWF Logic AND W with f

Syntax: Vabe!l ANDWF f, d
Description: Performs operation of logic AND over the contents of W and f
registers.

If d=0, result is stored in W reqgister.
If d=1, result is stored in f register.

Operation: (W) AND, f=d
Operand: 0<f= 127

d = [0,1]
Flag: z

Number of words: 1
Number of cycles: 1

Example 1 ANDWF FSRE, 1

Before instruction: W=0x17, FSR=0xC2 ; 0001 0111 {0x17)
Aafter instruction: W=0x17, FSR=02 ; 1100 0010 {0x=C2)

; 0000 0010 {0%02)
Example 2 ANDWF FSR, O

Before instruction: W=0x17, FSR=0=xC2 ; 0001 0111 {0x17)
Aafter instruction: W=0x02, FSR=0xC2 ; 1100 0010 {0=C2)

; 0000 0010 (0x02)

A.13 IORLW Logic OR W with constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (7 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: Uaba/] IORLW k

Description: Cperation logic OR is performed over the contents of W register and
over 8-hit constant k, and result is stored in W reqgister.

Operation: (W LOR, (k) = W

Operand: 0< k=255

Flag: z

Number of words: 1
Number of cycles: 1
Example 1 IORL\W 0x35

Before instruction: W=0x09pa
after instruction: W=0=BEF
Z=0

Example 2 [ORLW REG
Before instruction: W=0x9aA
contenst REG=0x37

after instruction: W =0xaF
Z=0

A.14 IORWF Logic OR W with f

Syntax: [abed] ICRWE F, d
Description: Cperation logic OR is performed over the contents of W and f
registers.

If d=0, result is stored in W register.
If d=1, result is stared in f register.

Operation: (W) .OR. (fi=d
Operand: 0<f= 127

d = [0,1]
Flaqg: z

Mumber of words: 1
Number of cycles: 1

Example 1 [ORWF REG, O

Before instruction: REG=0x13, W=0x91

After instruction: FEG=0x13, W=0x93
=0

Example 2 [ORWF REG, 1

Before instruction: REG=0x13, W=0x91

After instruction: REG=0x93, W=0x91
=0

A.15 XORLW Logic exclusive OR W with constant

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (8 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: [labed] ©“ORLW k

Description: Cperation exclusive OR (XOR) is done over the contents of W
register and constant k, and result is stared in W register.

Operation: (W) HOR. k=W

Operand: 0< k=255

Flag: z

Number of words: 1
Number of cycles: 1
Example 1 XORLW 0OxAF

Before instruction: W=0xB5 ; 1010 1111 {0=AF)
after instruction: W =014 ; 1011 0101 {0=B5)

; 0001 1010 (0% 14}

Example 2 HORLW REG

Before instruction: W=0xAF ; 1010 1111 {0 A3
REG=0x37 ; 0011 0111 (0x37)
after instruction: W=0x18
Z=0 ; 0001 1000 (0% 18)

A.16 XORWF Logic exclusive OR W with f

Syntax: Uaba!] =ORWF f, d
Description: Qperation exclusive OR is performed over the contents of W and f
registers.

If d=0, result is stored in W register.
If d=1, result is stored in f register.

Operation: (W) KOR. () = d
Operand: 0<f= 127

d = [0,1]
Flag: z

Number of words: 1
Number of cycles: 1

Example 1 XORWF REG, 1

Before instruction: REG=0xAF, W=0xB5 ; 1010 1111 {0OxAF)
Aafter instruction: REG=0x1A, W=0xB5 ; 1011 0101 {0x=BE)

;0001 1010 (0x1a)
Example 2 XORWF REG, O

Before instruction: REG=0xAF, W=0xB5 ; 1010 1111 {0xAF)
Aafter instruction: REG=0xAF, W=0x14 ; 1011 0101 {0xB5)

;0001 1010 (014}

A.17 INCF Increment f

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (9 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax:
Description:

Operation:
Operand:

Flag:
Mumber of words:

Number of cycles:

Example 1 INCF
Before instruction:

After instruction:

Example 2 INCF

Before instruction:

After instruction:

A.18 DECF

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (10 of 21) [4/2/2003 16:19:25]

[fzbed] INCF f, d
Increments f register by one.

If d=0, result is stared in W register.
If d=1, result is stored in f register.

(F) +1=d
0D=fz 127
d < [0,1]
z

1
1
REG, 1

FEG=0XFF
Z=0
REG=0x00
=1

REG, O

FEG=0x10
Wiy =

Z=0
FEG=0x10
Wi=0x11
Z=0

Decrement f

Appendix A - Instruction Set

Syntax: [lab=d] DECF f, d

Description: Decrements fregister by one.
If d=0, result is stored in W register.
If d=1, result is stared in f register.

Operation: fi-1=d
Operand: 0=f= 127

d = [0,1]
Flag: z

Number of words: 1
Number of cycles: 1

Example 1 DECF REG, 1

Before instruction: REG=0x01
Z=0

After instruction: FEG=0x00
Z=1

Example 2 DECF REG, O

Befare instruction: REG=0x13
. =
=0
after instruction: REG=0x13
Wy =012
£=0

A.19 RLF Rotate f to the left through CARRY

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (11 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: [lab=d] BLF f, d

Description: Contents of f register is rotated by one space to the left through C
{Carry) flag.
If d=0, result is stored in W register.
If d=1, result is stared in f register.

Operation: (fen=)=d<n+1=, f<7> = C, C = d=<0>;
Operand: 0<f= 127

d = [0,1]
Flﬂg: i ey registarf o

Number of words:
Number of cycles:

1
1

Example 1 RLF REG, O

Before instruction: REG=1110 0110
Z=0

After instruction: REG=1110 0110
Wi=1100 1100
-=1

Example 2 RLF REG, 1
Before instruction: REG=1110 0110
Z=0

After instruction: FEG=1100 1100
=1

A.20 RRF Rotate f to the right through CARRY

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (12 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax:
Description:

Operation:
Operand:

Flag:
Number of words:
Number of cycles:

[{zbef] REF f, d

Contents of fregister is rotated by one space to the right through C

{Carry) flag.
If d=0, result is stored in W register.
If d=1, result is stored in f register.

if<nz) = d<n-1z, f<0z> = C, C = d<7>;

0=f= 127

d= [0,1]

i = o registarf :
1

1

Example 1 RRF REG, O

Before instruction:

after instruction:

REG=1110 0110
W =

C=0

REG=1110 0110
Ww=0111 0011
C=0

Example 2 RRF REG, 1

Before instruction:

after instruction:

A.21 COMF

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (13 of 21) [4/2/2003 16:19:25]

REG=1110 0110
=0
FEG=0111 0011
=0

Complement f

Appendix A - Instruction Set

Syntax: Uabs/] COMF f, d

Description: Contents of f register is complemented.
If d=0, result is stored in W reqgister.
If d=1, result is stored in f register.

Operation:) =d
Operand: 0O=f=2 127

d=[0,1]
Flag: z

Mumber of words:

1
Number of cycles: 1

Example 1 COMF REG, O

Before instruction: REG=0x13 ; 0001 0011 {0=x13)
after instruction: FEG=0x13 i complement
W=0=EC

;1110 1100 (0XEC)
Example 2 COMF INDF, 1
Before instruction: FSR=0xCZ
address contents (FSR)=0x 44

After instruction: FSR=0xC2
address contents (FSR)=0x55

A.22 BCF Reset bitb in f

Syntax: [lab=f] BCF £, b
Description: Reset bit b in f register.
Operation: (0 = f<b=>
Operand: 0<f=< 127

0=zb=7
Flag:

Number of words: 1
Number of cycles: 1

Example 1 BCF REG, 7

Before instruction: REG=0xC7 ; 1100 0111 {0O=xC7)
after instruction: REG=0x47 ; 0100 0111 {0=47)

Example 2 BCF INDF, 3

Before instruction: W=0x17

FSR=0xC2

address contents {FSR)=0x2F
after instruction: W=0x17

FSR=0=CZ2

address contents (FSR)=0x27

A.23 BSF Sethitbin f

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (14 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: [lab=] BSF £, b
Description: Set bit b in f register.
Operation: 1 =f<bh>
Operand: 0=f= 127
0<h=7
Flag: -
Number of words: 1
Number of cycles: 1
Example 1 BSF REG, 7
Before instruction: REG=0x07 ; 0000 0111 {0=07)
after instruction: REG=0x17 ; 1000 0111 {0=17)
Example 2 BCF INDF, 3
Before instruction: W=0x17
FSR=0xCZ2
address contents {FSR)=0x=20
After instruction: W =017
FSRE=0xC2

A.24 BTFSC

Syntax:
Description:

Operation:
Operand:

Flag:
Number of words:
Number of cycles:

Example
LaB_ 01

LaB_0O2
LaB_02

BTFSC REG,1

address contents {(FSR)=0x28

Test bitb in f, skip if it =0

[izbel] BTFSC f, b

If bit b in f register equals zero, then we skip the next instruction.
If bit b equals zero, during execution of the current instruction,
execution of the next one is disabled, and NOP instruction executes
instead thus making the current one a two-cycle instruction.

Skip next instruction if (f<b=)=0

0=f< 127

0=<h=7

1

1 or 2 depending on a b bit

; Test bit no.1 in REG
; Skip this line if =0
;Skip here if =1

Before instruction, program counter was at address LAB_0O1,

After instructian, if the first bit in REG reqgister was zero, program counter points to

address LAB_0D3.

If the first hit in REG register was one, program counter points to address LAB_DZ,

A.25 BTFSS

Test bit b in f, skip if =1

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (15 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: [aba/] BTFSS T, b

Description: If bit b in f register equals one, then skip over the next instruction,
If bit b equals one, during execution of the current instruction, the
hext one is disabled, and MOP instruction is executed instead, thus
making the current one a two-cycle instruction.

Operation: Skip next instruction if {f<b=)=1
Operand: 0=f= 127

0<hbh=7
Flag: -

Number of words: 1
Number of cycles: 1 or 2 depending on a b bif

Example

LAB_01 BTFSS REG,1 ;Test hit no. 1 in REG
LaB_02 e ; Skip this line if =1
Lap_ 032 e ;Skip here if =0

Before instruction, program counter was at address LAB_O1

Aafter instruction, if the first bit in REG register was one, program counter paints to
gddress LAB_O3,

If the first hbit in REG reqgister was zero, program counter points to address LAB_DZ.

A.26 INCFSZ Increment f, skip if=0

Syntax: [labe!] INCFSZ f, d
Description: Contents of f register is incremented by one.
If d=0, result is stored in W reqgister.
If d=1, result is stored in f register.
If result =0, the next instruction is executed as NOP making the
current one a two-cycle instruction.

Operation: fr+1=4d
Operand: 0O=<f= 127

d = [0,1]
Flag: -

Number of words: 1
Number of cycles: 1 or 2 depending on a result

Example

Lap 01 INCFSZ REG, 1 ; Increase the contents REG by one.
LaB_02 e i Skip this line if =0

Lap 03 e ; Skip here if =0

The contents of program counter before instruction, PC=address LAB_O1

The contents of REG register after executing an instruction REG=REG+1, if REG=0,
program counter points to label address LAB_03. Otherwise, program counter points to
address of the next instruction or to LAB_O2.

A.27 DECFSZ Decrement f, skip if =0

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (16 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: [/labe!] DECFSZ f, d
Description: Contents of f register is decremented by one.
If d=0, result is stored in W reqgister.
If d=1, result is stored in f register.
If result = 0, next instruction is executed as NOP, thus making the
current one, a two-cycle instruction,

Operation: ifi-1=d
Operand: 0=<f= 127

d = [0,1]
Flaqg: -

Number of words: 1
Mumber of cycles: 1 or 2 depending on a result

Example

LaB_01 DECFSZ CHT, 1 ; Decrement the contents REG by one.
LAB_0Z2 e ; Skip this line if =0

LaB_ 03 e ; Skip here if = 1

The contents of program counter befare instruction, PC=address LAR_0O1
The contents of CNT register after executing an instruction CNT=CNT-1, if CNT=0,

program counter points to address of [abel LAB_03. Otherwise, program counter points to
address of the following instruction, or to LAB_DZ,

A.28 GOTO Jump to address

Syntax: Uabal] GOTO k

Description: Unconditional jump to address k.

Operation: k= PC<10:0=, {(PCLATH=#:3>) = PC<12:11>
Operand: 0< k= 2048

Flag: -

Number of words: 1
Number of cycles: 2

Example

LaB_ 00 GOTO LAR 01 ;Jump to LAB_O1

LaB_01

Before instruction: PC=address LAB_0O0
after instruction: PC=address LAB_0O1

A.29 CALL Call a program

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (17 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax:
Description:

[fzbel] CalLL k

Instruction calls a subprogram. First, return address {(PC+1) is
stored on stack, then 11-bit direct operand k, which contains the
subprogram address, is stored in program counter.

Operation: (PCy + 1 = Top Of Stack {TOS)
k= PC<10:0=, (PCLATH=<4:3>) = PC<12:11>
Operand: 0< k= 2048
Flaqg: -
Number of words: 1
Number of cycles: 2
Example
LAR_ 01 Call Lap 02 » Call subrutine LAB_02
Lap_02

Before instruction:

After instruction:

PC=address LAB_0O1
TOS=x

PC=address LAR_0Z2
TOS=LAB_0O1

A.30 RETURN Return from a subprogram
Syntax: [aba/] RETURMN
Description: Contents from the top of a stack is stored in program counter.,
Operation: TOS = program counter PC
Operand: -
Flag: -
Mumber of words: 1
Number of cycles: 2
Example RETURN
Before instruction: PC=3
TOS=x
after instruction: PC=TO5
TOS5=TO5-1

A.31 RETLW Return from a subprogram with constant in W

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (18 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax:
Description:

[izbel] RETLW k

8-bit constant k is stored in W register. Yalue off the top of a stack

Is stored in pragram counter.

Operation: (ki =W, TOS = PC
Operand: 0< k=255
Flag: -
Mumber of words: 1
Number of cycles: 2
Example RETLW 0Dx43
Before instruction: W=x
PC=x
TOS=x
after instruction: W =043
PC=TOS
TOS=TOS-1

A.32 RETFIE

Syntax:
Description:

Operation:
Operand:
Flag:

Number of words:
Number of cycles:

Example
Before instruction:

After instruction:

A.33 NOP

Syntax:
Description:
Operation:
Operand:
Flag:

Number of words:
Number of cycles:

Example MNP

Before instruction:
After instruction:

A.34 CLRWDT

RETFIE

Return from interrupt routine

[izbel] RETFIE

Return fram a subprogram. Yalue from TOS is stored in pragram
counter PC. Interrupts are enabled by setting a GIE {Global
interrupt Enable) hit.

TOS = PC; 1= GIE

1
2

PC=x
GIE=D
PC=TOS

No operation

[fz3bed] HOP
Does not execute any operation or affect any flag.

PC=x
PC=x+1

Initialize watchdog timer

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (19 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

Syntax: [labe] CLEWDT
Description: Watchdog timer is reset. Prescaler of the Watchdog timer is also
reset, and status bits TO and PD are set also.
Operation: 0= WDT
0 = WDT prescaler
1 =70
1 = PD
Operand: -
Flag: TO, PD

Number of words: 1
Number of cycles: 1

Example CLRWDT

Before instruction: WODT counter=x
WDT prescaler=1: 128
after instruction: WDT counter=0x00
WDT prescaler counter=0
TO=1
FD=1
WDT prescaler=1: 128

A.35 SLEEP Stand by mode

Syntax: [/zH=] SLEER

Description: Processor goes into low consumption mode. Oscillator is stopped.
PO (Power Down) status hit is reset, TO (Timer Out) hit is set, WDT
{Watchdog) timer and its prescaler are reset,

Operation: 0= WDT
0 = WDT prescaler
1=T0O
0=FD

Operand: -

Flag: TO, PD

Number of words: 1

Number of cycles: 1

Example SLEEP

Before instruction: WDT counter=x
WOT prescaler=x

after instruction: WDT counter=0:x00
WDT prescaler=0
TO=1
PO=0

Table of contents Chapter overview Next page

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (20 of 21) [4/2/2003 16:19:25]

Appendix A - Instruction Set

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/A_Dodatak.htm (21 of 21) [4/2/2003 16:19:25]

mailto:office@mikroelektronika.co.yu

Appendix B - Numeric Systems

Table of contents Chapter overview Next page

Appendix B

Numeric Systems

Introduction

B.1 Decimal numeric system
B.2 Binary numeric system
B.3 Hexadecimal numeric system

Conclusion

It was always difficult for people to accept the fact that some things differ from them or their way
of thinking. That is probably one of the reasons why numeric systems which differ from a decimal
are still hard to understand. Still, whether we want it or not, reality is different. Decimal numeric
system that people use in everyday life is so far behind the binary system used by millions of
computers around the world.

Each numeric system are based on some basis. With a decimal numeric system, that basis is 10,
with binary 2, and with a hexadecimal system 16. The value of each decimal is determined by its
position in relation to the whole number represented in the given numeric system. The sum of
values of each decimal gives the value of the whole number. Binary and hexadecimal numeric
systems are especially interesting for the subject of this book. Beside these, we will also discuss a
decimal system, in order to compare it with the other two. Even though a decimal numeric system
is a subject we are well acquainted with, we will discuss it here because of its relatedness to other
numeric systems.

Decimal numeric system is defined by its basis 10 and decimal space that is counted from right to
left, and consists of numbers 0,1, 2, 3, 4, 5, 6, 7, 8, 9. That means that the end right digit of the
total sum is multiplied by 1, next one by 10, next by 100, etc.

Example:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (1 of 6) [4/2/2003 16:19:30]

Appendix B - Numeric Systems

4631
\— 1* 107 = 1
3*10'= 30
B* 108 = GO0
A% 10% = 4000
Fesult = 4631

Operations of addition, subtraction, division, and multiplication in a decimal numeric system are
used in a way that is already known to us, so we won't discuss it further.

Binary numeric system differs in many aspects from the decimal system we are used to in our
everyday lives. Its numeric basis is 2, and each number can have only two values, '1' or '0".
Binary numeric system is used in computers and microcontrollers because it is far more suitable
for processing than a decimal system. Usually, binary number consists of binary digits 8, 16 or 32,
and it is not important in view of the contents of our book to discuss why. It will be enough for
now to adopt this information.

Example:
10011011 binary number with 8 digits

In order to understand the logic of binary numbers, we will consider an example. Let's say that we
have a small chest with four drawers, and that we need to tell someone to bring something from
one of the drawers to us. Nothing is more simple, we will say left side, bottom (drawer), and the
desired drawer is clearly defined. However, if we had to do this without the use of instructions like
left, right, beneath, above, etc., then we would have a problem. There are many solution to this
problem, but we should look for one that is most beneficent and practical! Lets designate rows
with A, and types with B. If A=1, it refers to the upper row of drawers, and for A=0, bottom row.
Similarly with columns, B=1 represents the left column, and B=0, the right (next picture). Now it
is already easier to explain from which drawer we need something. We simply need to state one of
the four combinations: 00, 01, 10 or 11. This characteristic naming of each drawer individually is
nothing but binary numeric representation, or conversion of common numbers from a decimal into
binary form. In other words, references like "first, second, third and fourth" are exchanged with
"00,01, 10 and 11".

B=0 B=1
DREAWERS 1 DRAWERS 2

A= 00 01
A= DRAWERS 3 DRAWERS 4
= 10 11

What remains is for us to get acquainted with logic that is used with binary numeric system, or
how to get a numeric value from a series of zeros and ones in a way we can understand, of
course. This procedure is called conversion from a binary to a decimal number.

Example:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (2 of 6) [4/2/2003 16:19:30]

Appendix B - Numeric Systems

10011011

\— 1+20=1
1*21=2
o22=0
1*2%=8
1*24=1b
oF2%=0
or25=0
1*27=128
Result =155

As you can see, converting a binary number into a decimal number is done by calculating the
expression on the left side. Depending on the position in a binary number, digits carry different
values which are multiplied by themselves, and by adding them we get a decimal number we can
understand. Let's further suppose that there are few marbles in each of the drawers: 2 in the first
one, 4 in the second drawer, 7 in the third and 3 in the fourth drawer. Let's also say to the one
who's opening the drawers to use binary representation in answer. Under these conditions,
question would be as follows: "How many marbles are there in 01?", and the answer would be:
"There are 100 marbles in 01." It should be noted that both question and the answer are very
clear even though we did not use the standard terms. It should further be noted that for decimal
numbers from O to 3 it is enough to have two binary digits, and that for all values above that we
must add new binary digits. So, for numbers from O to 7 it is enough to have three digits, for
numbers from 0 to 15, four, etc. Simply said, the biggest number that can be represented by a
binary digit is the one obtained when basis 2 is graded onto a number of binary digits in a binary
number and thus obtained number is decremented by one.

Example:
2P _1=16-1=15

This means that it is possible to represent decimal numbers from 0 to 15 with 4 binary digits,
including numbers '0' and '15', or 16 different values.

Operations which exist in decimal numeric system also exist in a binary system. For reasons of
clarity and legibility, we will review addition and subtraction only in this chapter.

Basic rules that apply to binary addition are:

+ + + +

1 a a 1
0 1 0 1
I e R 1

Addition is done so that digits in the same numeric positions are added, similar to the decimal
numeric system. If both digits being added are zero, their sum remains zero, and if they are 'O’
and '1', result is '1'. The sum of two ones gives two, in binary representation it will be a zero, but
with transferring '1' to a higher position that is added to digits from that position.

Example:

http://www.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (3 of 6) [4/2/2003 16:19:30]

Appendix B - Numeric Systems

1010 First number
- 1001 Second number

10011 Result

We can check whether result is correct by transferring these number to decimal numeric system
and by performing addition in it. With a transfer we get a value 10 as the first number, value 9 as
the second, and value 19 as the sum. Thus we have proven that operation was done correctly.
Trouble comes when sum is greater than what can be represented by a binary number with a
given number of binary digits. Different solutions can be applied then, one of which is expanding
the number of binary digits in the sum as in the previous example.

Subtraction, like addition is done on the same principle. The result of subtraction between two
zeros, or two ones remains a zero. When subtracting one from zero, we have to borrow one from
binary digit which has a higher value in the binary number.

Example:

1010 First number
- 1001 Second number

0001 pesult

By checking the result as we did with addition, when we translate these binary numbers we get
decimal numbers 10 and 9. Their difference corresponds to number 1 which is what we get in
subtraction.

Hexadecimal numeric system has a number 16 as its basis. Since the basis of a numeric system is
16, there are 16 different digits that can be found in a hexadecimal number. Those digits are "0,
1,2,3,4,5,6,7,8,9,A,B,C, D, E, F". Letters A, B, C, D, E and F are nothing but values 10, 11,
12, 13, 14 and 15. They are introduced as a replacement to make writing easier. As with a binary
system, here too, we can determine with same formula what is the biggest decimal number we
can represent with a specific number of hexadecimal digits.

Example: With two hexadecimal digits
16* —1=256-1= 255

Usually, hexadecimal number is written with a prefix "$" or "0x" ,or suffix"h" , to emphasize the
numeric system. Thus, number A37E would be written more correctly as $A37E, OXA37E, or
A37Eh. In order to translate a hexadecimal number into a binary numeric system it is not
necessary to perform any calculation but simple exchange of hexadecimal digits with binary digits.
Since the maximum value of a hexadecimal number is 15, that means that it is enough to use 4
binary digits for one hexadecimal digit.

Example:

$E4 = 11100100
T
E 4

By checking, that is transferring both numbers into decimal numeric system, we get a number 228

http://www.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (4 of 6) [4/2/2003 16:19:30]

Appendix B - Numeric Systems
which proves the accuracy of our action.

In order to get a decimal equivalent of a hexadecimal number, we need to multiply each digit of a
number with number 16 which is gradated by the position of that digit in hexadecimal number.

Example:

AZTE
\—14*15”: 14
7B = 112
IT1EI= 765

10* 16 % = 40960
Fesult = 41854

Addition is, like in two preceding examples, performed in a similar manner.

Example:

$3AZE First number
+ FASCT Second number

$E3SEC Result

We need to add corresponding number digits. If their sum is equal 16, write O and transfer one to
the next higher place. If their sum is greater than 16, write value above and transfer 1 to the next
higher digit.Eg. if sum is 19 (19=16+3) write 3 and transfer 1 to the next higher place. By
checking, we get 14891 as the first number, and second is 43457. Their sum is 58348, which is a
number $E3EC when it is transferred into a decimal numeric system. Subtraction is an identical
process to previous two numeric systems. If the number we are subtracting is smaller, we borrow
from the next place of higher value.

Example:

t2046 First number
+ 51752 Second number

$15F4 Result

By checking this result, we get values 11590 for the first number and 5970 for the second, where
their difference is 5620, which corresponds to a number $15F4 after a transfer into a decimal
numeric system.

Binary numeric system is still the one that is most in use, decimal the one that's easiest to
understand, and a hexadecimal is somewhere between those two systems. Its easy conversion to
a binary numeric system and easy memorization make it, along with binary and decimal systems,
one of the most important numeric systems.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (5 of 6) [4/2/2003 16:19:30]

Appendix B - Numeric Systems

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. All Rights Reserved. For any comments contact webmaster.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/B_Dodatak.htm (6 of 6) [4/2/2003 16:19:30]

mailto:office@mikroelektronika.co.yu

Appendix C - Glossary

Appendix C

Glossary

Introduction

« Microcontroller

. 1/0 pin

. Software

. Hardware

. Simulator

. ICE

« EPROM Emulator
. Assembler

. HEX file

. List file

. Source File

. Debugging

. ROM, EPROM, EEPROM, FLASH, RAM

. Addressing
. ASCII

. Byte, Kilobyte, Megabyte
. Flag
. Interrupt vector or interrupts

« Programmer
« Product

Since all the fields of man's activity are regularly based on adequate and already adopted

terms (through which other notions and definitions become), so in the field of microcontrollers we
can single out some frequently used terms. ldeas are often connected so that correct
understanding of one notion is needed in order to get acquainted with one or more of the other
ideas.

Microcontroller

Microprocessor with peripherals in one electronic component.

http://ww.mikroelektronika.co.yu/english/product/books/PICbook/C_Dodatak.htm (1 of 4) [4/2/2003 16:19:32]

Appendix C - Glossary

1/0 pin

External microcontroller's connector pin which can be configured as input or output. In most cases
1/0 pin enables a microcontroller to communicate, control or read information.

Software

Information that microcontroller needs in order to be able to function. Software can not have any
errors if we want the program and a device to function properly. Software can be written in
different languages such as: Basic, C, pascal or assembler. Physically, that is a file on computer
disc.

Hardware

Microcontroller, memory, supply, signal circuits and all components connected with
microcontroller.

The other way of viewing this (especially if it's not working) is, that, hardware is something you
can kick.

Simulator

Software package for PC which simulates the internal function of microcontroller. It is ideal for
checking software routines and all the parts of the code which do not have over demanding
connections with an outside world. Options are installed to watch the code, movement around the
program back and forth step by step, and debugging.

ICE

ICE (In Circuit Emulator), internal emulator, very useful part of the equipment which connects a
PC instead of microcontroller on a device that is being developed. It enables software to function
on the PC computer, but to appear as if a real microcontroller exists in the device. ICE enables you
to move through program in real time, to see what is going on in the microcontroller and how it
communicates with an outside world.

EPROM Emulator

EPROM Emulator is a device which does not emulate the entire microcontroller like ICE emulator,
but it only emulates its memory. It is mostly used in microcontrollers that have external memory.
By using it we avoid constant erasing and writing of EPROM memory.

Assembler

Software package which translates source code into a code which microcontroller can understand.
It contains a section for discovering errors. This part is used when we debug a program from
errors made when program was written.

HEX file

This is a file made by assembler translator when translating a source file, and has a form
"understood” by microcontrollers. A continuation of the file is usually File_name.HEX where the
name HEX file comes from.

List file

This is a file made by assembler translator and it contains all instructions from source file with
addresses and comments programmer has written. This is a very useful file for keeping track of
errors in the program. File extension is LST which is where its name comes from.

Source File

http://www.mikroelektronika.co.yu/english/product/books/PICbook/C_Dodatak.htm (2 of 4) [4/2/2003 16:19:32]

Appendix C - Glossary

File written in the language understood by man and assembler translator. By translating the
source file, we get HEX and LIST files.

Debugging
Error made in writing a program, which error we are not aware of. Errors can be quite simple such
as typing errors, and quite complex such as incorrect use of program language. Assembler will find

most of these errors and report them to ".LST' file. Other errors will need to be searched for by
trying it out and watching how device functions.

ROM, EPROM, EEPROM, FLASH, RAM

Types of memories we meet with microcontroller use. First one can not be erased, what you write
in it once, stays forever, and can not be erased. The second is erasable with UV lamp. Third one
can be erased electrically, using voltage which microcontroller operates on. Fourth one is
electrically erasable, but unlike EEPROM memory it does not have such a great number of cycles
of writing and erasing at memory locations. Fifth one is fast, but it does not hold back the
contents as the previous when there is supply shortage. Thus, program is not stored in it, but it
serves for different variables and inter-results.

Addressing

Determines and designates certain memory locations.

ASCII

Short for "American Standard Code for Information Interchange”. It is widely accepted type of
coding where each number and letter have their eight-bit code.

Carry

Transfer bit connected with arithmetic operations

Code

File, or section of a file which contains program instructions.
Byte, Kilobyte, Megabyte

Terms designating amounts of information. The basic unit is a byte, and it has 8 bits. Kilobyte has
1024 bytes, and mega byte has 1024 kilobytes.

Flag

Bits from a status register. By their activation, programmer is informed about certain actions.
Program activates its response if necessary.

Interrupt vector or interrupts
Location in microcontroller memory. Microcontroller takes from this location information about a

section of the program that is to be executed as an answer to some event of interest to
programmer and device.

Programmer

Device which makes it possible to write software in microcontroller memory, thus enabling the
microcontroller to work independently. It consists of the hardware section usually connected with
one of the ports and software section used on the computer as a program.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/C_Dodatak.htm (3 of 4) [4/2/2003 16:19:32]

Appendix C - Glossary

Product

Product development is a combination of luck and experience. Short terms, or time-limits for
production should be avoided because even with most simple assignments, much time is needed
to develop and improve. When creating a project, we need time, quiet, logical mind and most
importantly, a thorough understanding of consumer's needs. Typical course in creating a product
would have the following algorithm.

(Request :} too wague
(: ‘J’. -y too much
EHpEﬂdlturESJ
L
(" Time limit) too short
i)
b d
Skil) =l
)
Determining j
Leave the
3 fee [project]

i)
outline ¥——
)
)

AL
Making the
hardware part

L

Making the
software part

I

Making the software
part of the project

L

Buyer examines
a device

C Payment j

Ll

project modifications

il

Table of contents Chapter overview Next page

© Copyright 1999. mikroElektronika. Al Rights Reserved. For any comments contact webmaster.

http://www.mikroelektronika.co.yu/english/product/books/PICbook/C_Dodatak.htm (4 of 4) [4/2/2003 16:19:32]

mailto:office@mikroelektronika.co.yu

	www.mikroelektronika.co.yu
	PIC book
	Chapter 1 - Introduction to Microprocessors
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 2 - Microcontroller PIC16F84
	Chapter 3 - Instruction Set
	http://www.mikroelektronika.co.yu/english/product/books/PICbook/4_Poglavlje.htm
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	http://www.mikroelektronika.co.yu/english/product/books/PICbook/5_04Poglavlje.htm
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 5 - MPLAB
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Chapter 6 - Samples
	Appendix A - Instruction Set
	Appendix B - Numeric Systems
	Appendix C - Glossary

	LMPHOILEPKBNIJJGLGNPAINMAOBEABBE:
	form1:
	x:
	f1: http://www.mikroelektronika.co.yu/english/microweb/orderform/ok.htm
	f2: [Cooment about book PIC microcontrollers]
	f3:
	f4: [USA]
	f5:
	f6:

	f7: Submit
	f8:
	f9:

